Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и подключение теплового реле для электродвигателя

Принцип работы и подключение теплового реле для электродвигателя

Для защиты электромоторов от перегрузок активно используются тепловые реле.

Хотя было создано довольно много видов этих приборов, область их применения практически аналогична.

  • Конструктивные особенности
  • Основные виды
  • Принцип работы
  • Схемы подключения
  • Рекомендации по выбору

При выборе теплового реле для электродвигателя необходимо знать особенности конструкции устройства, а также принцип его работы.

Начинающим электрикам, кроме этого, предстоит разобраться со схемами подключения прибора.

Конструктивные особенности

В основе устройства и принципа действия теплового реле (ТР) лежит закон Джоуля-Ленца — выделяемое на участке электроцепи количество тепла пропорционально сопротивлению этого участка и квадрату силы тока. Это физическое явление сегодня активно применяется в тепловых разъединителях. Небольшой участок электрической цепи, выступающий в роли излучателя, наматывается на изолятор спиралью.

Проходящий через электрооборудование ток протекает и в этом участке. Рядом со спиралью расположена пластина, изготовленная из биметаллического сплава. При достижении определенной температуры она изгибается и воздействует на группу контактов.

Особенность пластины заключается в том, что она изготовлена из двух металлов, обладающих разными показателями коэффициента теплового расширения, которые составляют один элемент.

Конструкция прибора показана на рисунке.

К проводникам подсоединены три фазы питания электромотора. Обмотка нагрева находится над биметаллической пластиной, что позволяет уменьшить число ложных срабатываний прибора. Пластины упираются в подвижный элемент конструкции, который воздействует на механизм разъединителя. В верхней части прибора расположены две группы контактов (закрытые NC и открытые NO), а также регулятор токовой нагрузки пружинного типа.

Основные виды

Так как существует довольно много видов электротеплового реле, то стоит познакомиться с ними. Они различаются областью применения и даже имеют собственную классификацию. Среди основных типов ТР выделяют:

  • РТЛ — трехфазный прибор, обеспечивающий защиту электромотора от перекоса фаз, заклинивания ротора, а также затянутого пуска. Реле этого типа может монтироваться на контакты пускателя типа ПМЛ либо работать самостоятельно с клеммником КРЛ.
  • РТТ — устройство предназначено для работы в трехфазной электросети и выполнения функций, аналогично РТЛ. Прибор может использоваться самостоятельно при монтаже на панели либо устанавливаться на пускатели типов ПМЕ и ПМА.
  • РТИ — трехфазное реле, необходимое для защиты двигателей от асимметрии фаз, заклинивания и длинного пуска. Его можно монтировать на пускатели двух типов — КМИ либо КМТ.
  • ТРН — твердотельный прибор предназначен для применения в двухфазных электросетях. Он позволяет контролировать режим пуска и работы электродвигателя. Устройство оснащено ручным механизмом возврата контактов в начальное положение. Особое внимание нужно уделить тому факту, что на работу реле температура внешней среды практически не оказывает никакого влияния.
  • РТК — для контроля температуры используется щуп, расположенный в корпусе электрооборудования. Это реле тепловое, оно способно контролировать только один параметр.
  • РТЭ — прибор плавления сплава. Его главный проводник изготовлен из определенного металла, который при достижении конкретной температуры плавится. В результате происходит разъединение электроцепи.

Таким образом, несмотря на имеющееся различия, все эти приборы предназначены для решения одной задачи — защиты электрического оборудования.

Принцип работы

Познакомившись с конструкцией и типами устройств, необходимо разобраться с принципом работы теплового реле. На каждом электромоторе производитель устанавливает табличку с техническими характеристиками. Одной из наиболее важных среди них является показатель номинального рабочего электротока. Сегодня используется много агрегатов, во время пуска или работы которых это значение может существенно превышаться.

Если перегрузки наблюдаются в течение длительного временного отрезка, то возможен перегрев катушек, разрушение изоляционного слоя и последующий выход мотора из строя. Защитные ТР способны влиять на цепь управления, размыкая контакты либо подавая предупреждающий сигнал обслуживающему персоналу. Приборы монтируются в силовую электроцепь перед двигателем, чтобы иметь возможность контролировать показатель проходящего через агрегат тока.

Во время настройки защитного устройства параметры выставляются в бо́льшую сторону от номинального паспортного значения на величину от 10 до 20%. К вопросу настройки реле нужно подходить ответственно, так как разъединение цепи при перегрузке происходит не мгновенно. В зависимости от различных факторов для этого может потребоваться 5−20 минут.

Схемы подключения

Чаще всего при подключении ТР к магнитным пускателям используется группа нормально замкнутых контактов. При этом к кнопке «Стоп» они подсоединяются последовательно. Если используется такая схема, то нормально разомкнутые контакты можно задействовать в системе сигнализации срабатывания устройства. В более сложных автоматизированных системах эта группа контактов часто применяется для активации аварийных протоколов остановки конвейерных цепей обслуживания.

Подключение ТР можно выполнить самостоятельно, но предварительно нужно разобраться с конструктивными особенностями прибора и принципом его функционирования. Независимо от типа используемого устройства и количества клемм магнитного пускателя, сложностей с внедрением ТР в схему возникнуть не должно.

Прибор монтируется перед электромотором, а его нормально замкнутые контакты должны быть последовательно соединены с кнопкой остановки оборудования.

Рекомендации по выбору

При выборе прибора необходимо ориентироваться на область его использования, а также имеющийся функционал. Проблем с поиском нужного защитного устройства практически никогда не возникает. Особое внимание в это время нужно уделить следующим моментам:

  • Однофазные ТР с автоматическим сбросом возвращаются в исходное состояние по истечении определенного отрезка времени. Если электродвигатель в этот момент еще перегружен, прибор сработает повторно.
  • Реле, имеющие систему компенсации температуры окружающей среды, способны работать в широком температурном диапазоне.
  • Некоторые модели приборов обладают способностью контролировать состояние фаз. Они сработают не только при перегреве мотора, но также, если был обнаружен обрыв фаз, их разворот либо дисбаланс.
  • Существуют ТР, способные срабатывать при недогрузке электрооборудования. Такая ситуация возможна, например, когда насос начал функционировать всухую.
Читать еще:  Что такое подушка двигателя рено логан

Стоимость реле находится в широком ценовом диапазоне. Во время выбора прибора нужно внимательно изучить его технические характеристики. В паспорте можно также найти и рекомендации по подключению ТР. Впрочем, этот процесс не является сложным, и проблемы возникают крайне редко.

Электротепловые реле защиты

Электротепловые реле, называемые также тепловыми реле, используют для защиты электродвигателей от перегрузки при токах в двигателе, превышающих от 1,2 до 5 раз номинальный ток двигателя. Узел защиты выполняют по схеме рис. 5.1б.

Воспринимающим элементом теплового реле служит биметаллический электротепловой преобразователь (см. [1] п. 3.4). В реле применяется механическая передача с защелкой (см. [1] п. 3.2). Предусматривается ручное включение реле с помощью механического привода и автоматическое отключение реле воздействием биметаллической пластины на защелку.

Нагрев биметаллического элемента может происходить за счет тепла, выделяемого током нагрузки в самой пластине или в специальном нагревателе. Лучшие времятоковые характеристики реле получаются при комбинированном нагреве, когда биметаллическая пластина нагревается и за счет проходящего через нее тока, и за счет тепла, выделяемого специальным нагревателем, обтекаемым тем же током нагрузки.

При выборе теплового реле необходимо согласовать его времятоковую характеристику с характеристикой нагрева защищаемого объекта (электродвигателя). Чем больше ток перегрузки I относительно номинального тока IНдв двигателя, тем быстрее двигатель нагревается, что может привести к его перегреву и выходу из строя. Постоянная времени нагрева электродвигателя зависит от длительности перегрузки. При кратковременных перегрузках в нагреве участвует только обмотка двигателя и постоянная времени невелика (5…10 мин.) из-за относительно малой массы обмотки. При длительной перегрузке в нагреве участвует вся масса двигателя. Постоянная времени нагрева для мощных двигателей – 40…60 мин. Для совершенной защиты необходимо, чтобы, постоянная времени нагрева ТР реле была такой же, как и у защищаемого двигателя. На практике тепловые реле не разрабатываются для каждого типа двигателя. Поэтому одно и то же реле используется для защиты двигателей разной конструкции, и постоянные времени нагрева реле и двигателя могут существенно различаться.

Обозначим через I ток, при котором тепловое реле срабатывает за время tср>>ТР , через Iнач – установившийся ток до начала перегрузки, под влиянием которого биметаллическая пластина воспринимающего элемента реле нагрелась до температуры θнач, превышающей температуру окружающей среды. Тогда зависимость времени срабатывания tср реле от тока перегрузки I >I можно представить в виде [9]:

.

На рис. 5.4а представлены зависимости времени срабатывания tср при 0

Характеристика нагрева двигателя показана на рис. 5.5б. Она представляет собой зависимость допустимого времени tдв нахождения двигателя под током перегрузки (когда температура двигателя достигает заданного предельного значения) от отношения I/IНдв, где IНдв— номинальный ток двигателя. Времятоковые характеристики tср1 и tср2 соответствуют разным тепловым реле. У одного реле (характеристика tср1) ток срабатывания I равен номинальному току двигателя IНдв, у другого (характеристика tср2) на 20% больше. Защитная характеристика реле и характеристика нагрева двигателя согласованы лучше при использовании второго реле.

При защите электродвигателей от перегрузки времятоковая характеристика реле должна удовлетворять следующим условиям:

отключение двигателя должно происходить при перегреве, не превышающем допустимого значения;

время срабатывания реле должно быть таким, чтобы можно было полнее использовать перегрузочную способность двигателя и осуществлять (при необходимости) прямой пуск двигателя от сети.

Характеристика правильно выбранного реле должна располагаться ниже и вблизи характеристики нагрева двигателя. В эксплуатационных условиях согласование характеристик реле и двигателя достигается выбором реле с номинальным током IНреле=1,2I, равным номинальному току IНдв двигателя. В этом случае, как правило, обеспечивается срабатывание реле в течение 5…20 минут при силе тока, превышающей номинальный ток (IНреле) на 35…40% [9].

Читать еще:  Возможные причины низкого давления масла в двигателе

На рис. 5.6 приведена электрическая схема, иллюстрирующая применение тепловых реле КК1 и КК2 для защиты асинхронного двигателя М от перегрузки.

Электротепловые реле типа ТРТ обеспечивают защиту асинхронного двигателя в следующих условиях: при длительной (свыше 20 мин) перегрузке двигателя током свыше 1,35IНреле; при затяжном пуске; при обрыве одной фазы. Регулятор реле позволяет изменять уставку тока в пределах ±0,15IНреле. Контакты реле коммутируют переменный ток до 10 А (при U=380 В, cosφ=0,4) или постоянный ток 0,5 А (в индуктивной цепи с постоянной времени 0,05 с и U=220 В). Электрическая износоустойчивость 10 4 срабатываний.

В схеме на рис. 5.6 кроме защиты от перегрузки реализована нулевая защита на контакторе КМ.

Как самостоятельно подключить тепловое реле — обзор схем

  • Что важно знать?
  • Особенности монтажа

Что важно знать?

Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).

При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:


Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.

При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров. К примеру, как на реле РТИ-1314:

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Читать еще:  Вкладыш в двигателе должен быть каким

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

2.5. УЗЛЫ ЭЛЕКТРИЧЕСКОЙ ЗАЩИТЫ ДВИГАТЕЛЕЙ И СХЕМ УПРАВЛЕНИЯ

Для предотвращения выхода из строя электрооборудования и повышения надежности работы электроприводов применяют целый ряд узлов электрической защиты, в том числе: защиту при коротком замыкании (к.з.) в силовых цепях и схемах управления, защиту при недопустимо больших толчках тока двигателей, защиту двигателей от перегрева, от самозапуска, защиту при обрыве цепи обмотки возбуждения, защиту от перенапряжений, от затянувшегося пуска синхрон­ных двигателей, от выпадения их из синхронизма, а также защитные блокировки.

Рассмотрим реализацию некоторых видов защит.

Защита при к.з. (максимально-токовая защита) обеспечивает немедленное отключение цепи, в которой произошло короткое замыкание. В силовых цепях она осуществляется: плавкими предохранителями Пр (рис. 2.15, а), автоматами В1 с электромагнитными расцепителями рис. 2.15, б, и максимальными токовыми реле РМ1 и РМ2 (рис. 2.15, в). Цепи управления защищают при к.з. либо теми же аппаратами, что и силовые цепи (обычно при мощности двигателей 1до 10 кВт), либо своими плавкими предохранителями Пр или автома­тами (рис. 2.15, в).

Рис. 2.15. Узел схемы управления, реализующий защиту от токов к.з.

Максимально-токовые реле РМ1 и РМ2 одновременно защищают двигатель постоянного тока или асинхронный двигатель с контактными кольцами от недопустимо больших толчков тока.

Номинальный ток плавкой вставки Iвст н предохранителей и ток уставки (ток срабатывания) Iуст автоматов и максимальных токовых реле определяют по приведенным далее формулам.

Для защиты короткозамкнутых асинхронных двигателей с началь­ным пусковым током Iп при нормальных условиях пуска (tп 5 с) или при большой частоте пусков

независимо от условий пуска

Для защиты асинхронных двигателей с контактными кольцами и двигателей постоянного тока:

Значение номинального тока двигателя Iном для двигателей повторно-кратковременного режима работы берут при ПВ = 25%.

Для защиты цепей управления

где IΣ кат суммарный ток катушек максимального количества одновременно включенных аппаратов.

Защита двигателей от перегрева, вызванного перегрузкой по току, реализуется: при продолжительном режиме работы — посредством тепловых реле (рис. 2.16, а) или автоматов с тепловым расцепителем (двигатель постоянного тока защищают одним тепловым реле); при повторно-кратковременном режиме работы — с помощью двух максимальных токовых реле РМ1 и РМ2 (рис. 2.16, б), поскольку в этом режиме

Рис. 2.16. Узел схемы, реализующий тепловую защиту

трудно согласовать тепловые характеристики двигателя и теплового реле. Применение для защиты асинхронных двигателей двух тепловых или максимальных токовых реле позволяет одновременно обеспечить защиту двигателя от работы на двух фазах. Реле времени РВ вводится в схему на рис. 2.16, б для того, чтобы реле РМ1 и PM2 не отключали двигатель при пуске. На время пуска контакт реле РВ шунтирует размыкающие контакты РМ1 и РМ2. Реле РМЗ в этой схеме служит для защиты при к.з. Номинальный ток нагревательного элемента теплового реле Iнагр и теплового расцепителя автомата Iрасц.н выбирают из условия

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector