Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Работа коллекторного электродвигателя переменного тока

Работа коллекторного электродвигателя переменного тока

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Рекомендуем:

  • Dji phantom 3 standard: инструкция, описание, достоинства
  • Как называется электродоска без руля
  • Классификация электродвигателей

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Автор и редактор обзоров по гаджетам и новой техники. Ведет работы по написанию свежих рейтингов к публикациям, проверки достоверности и актуальности информации уже опубликованных статей. Отвечает на вопросы в комментариях, пишет на авто темы.

Электродвигатели постоянного тока. Устройство и работа. Виды

Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Читать еще:  405 двигатель газель как выставить метки зажигания

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

История создания электродвигателя переменного тока

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током.

Введение

По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Асинхронная машина — это электрическая машина переменного тока, частота вращения ротора которой не равна (в двигательном режиме меньше) частоте вращения магнитного поля, создаваемого током обмотки статора.

Второе название асинхронных машин

В ряде стран к асинхронным машинам причисляют также коллекторные машины. Второе название асинхронных машин — индукционные вследствие того, что ток в обмотке ротора индуцируется вращающимся полем статора. Асинхронные машины сегодня составляют большую часть электрических машин. В основном они применяются в качестве электродвигателей и являются основными преобразователями электрической энергии в механическую.

Достоинства и недостатки

  • Лёгкость в изготовлении.
  • Отсутствие механического контакта со статической частью машины.
  • Небольшой пусковой момент.
  • Значительный пусковой ток.

История

Приоритет в создании асинхронного двигателя принадлежит Николе Тесле

Вклад в развитие асинхронных двигателей внес Галилео Феррарис, который в 1885 г. в Италии построил модель асинхронного двигателя мощностью 3 Вт. В 1888 г. Феррарис опубликовал свои исследования в статье для Королевской Академии Наук в Турине (в том же году, Тесла получил патент США 381,968 от 01.05.1888 (U.S. Patent 0 381 968|заявка на изобретение № 252132 от 12.10.1887), в которой изложил теоретические основы асинхронного двигателя. Заслуга Феррариса в том, что сделав ошибочный вывод о небольшом к.п.д. асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Статья Галилео Феррариса, опубликованная в журнале «Атти ди Турино», была перепечатана английским журналом и была прочитана в июле 1888 г. выпускником Дармштадтского Высшего технического училища, выходцем из России Михаилом Осиповичем Доливо-Добровольским .

Читать еще:  Starline a91 запуск двигателя по времени

Доливо-Добровольский установил, что для создания вращающегося магнитного поля — основы работы асинхронного двигателя — технически и экономически целесообразно применение симметричной трехфазной магнитной системы, со сдвигом фаз на 120 электрических градусов. Трехфазный асинхронный электродвигатель, изготовленный Доливо-Добровольским в 1889 г., продемонстрировал высокую эффективность и неоспоримые преимущества перед двухфазными двигателями Феррариса и Тесла. По словам изобретателя: «уже при первом включении выявилось ошеломляющее для представлений того времени действие… попытка остановить его торможением за конец вала от руки блестяще провалилась, и только при особой ловкости было возможно воспрепятствовать таким способом его запуску при включении. Если принять во внимание малые размеры моторчика, это представлялось чудом для всех приглашенных свидетелей». Несмотря на это отношение к переменному току у многих оставалось сдержанным. Корифей электротехники Т. Эдисон отказался даже осмотреть новое изобретение, заявив: «Нет, нет, переменный ток — это вздор, не имеющий будущего. Я не только не хочу осматривать двигатель переменного тока, но и знать о нем». Вскоре Доливо-Добровольскому удалось решить все основные проблемы, связанные с конструкцией двигателя, устройство которого до настоящего времени принципиально не менялось.

Первая демонстрация

Первой демонстрацией практического применения асинхронного двигателя и трехфазной системы стала Международная электротехническая выставка 1891 г. во Франкфурте-на-Майне. Выставку с гидроэлектростанцией на реке Неккар в городе Лауфен соединила 170-километровая линия электропередачи. А 25 августа на выставке зажглась тысяча электроламп, питаемых током от Лауфенской электростанции. Затем был пущен трехфазный асинхронный двигатель мощностью 75 кВт, приводивший в действие декоративный дестиметровый водопад. Разработки Доливо-Добровольского вскоре были внедрены в производство. Простой, экономичный и надежный двигатель переменного тока, получил широкое распространение и послужил стимулом для развития техники переменных токов и электроэнергетики в целом. В России фирма AEG в конце 90-х гг. XIX в. развернула сеть агентств в Москве, Санкт-Петербурге, Ростове и других городах, занимавшихся реализацией изделий своих германских предприятий. Генеральное представительство этой фирмы располагалось в Москве, в Лубянском проезде, рядом с Политехническим музеем.

Трехфазный асинхронный электродвигатель типа «DR8O» мощностью 6 л.с. (4 кВт) выпуска 90-х гг. XIX в. из собрания Политехнического музея является одним из первых серийных трехфазных двигателей фирмы AEG. Об этом свидетельствует наличие кольцевой обмотки на статоре. Впоследствии от таких обмоток отказались, перейдя на более совершенные — барабанные.

Заключение

Основные элементы двигателя — трехфазная обмотка статора, шихтованный ротор с короткозамкнутой обмоткой типа «беличья клетка» — предложены и разработаны Доливо-Добровольским. Работа асинхронного двигателя основана на электромагнитном взаимодействии между статором и ротором. Токи статорных обмоток создают вращающееся магнитное поле, которое, в свою очередь, индуцируют токи в короткозамкнутой обмотке ротора. В результате взаимодействия токов ротора с магнитным полем статора создается вращающий момент.

Принцип действия электродвигателя: как он работает

Электрический двигатель представляет собой особый преобразователь. Это машина, где электрическая энергия преобразуется и переходит в механическую. Принцип действия двигателя основан на электромагнитной индукции. Есть к тому же и электростатические двигатели. Можно без особых дополнений использовать двигатели на других принципах преобразования электричества в перемещении. Но немногие знают, как устроен и как работает электродвигатель.

  • Принцип работы устройства
  • Работа трехфазного асинхронного двигателя
  • Современная классификация
  • Основные особенности
  • Агрегаты пульсирующего тока
  • Модификации переменного тока
  • Универсальное коллекторное оборудование

Принцип работы устройства

В составе электродвигателя переменного тока присутствуют неподвижные и подвижные части. К первым относят:

  • статор;
  • индуктор.

Статор находит применение для машин синхронного и асинхронного типа. Индуктор эксплуатируется в машинах постоянного тока. Подвижная часть состоит из ротора и якоря. Первый применяют для синхронных и асинхронных устройств, тогда как якорь используется для оборудования с постоянными показателями. Функция индуктора лежит на двигателях небольшой мощности. Здесь нередко используют постоянные магниты.

Говоря о том, как устроен электродвигатель, необходимо определить, к какому классу оборудования относится конкретная модель. В конструкции асинхронного двигателя ротор бывает:

  • короткозамкнутым;
  • фазным, то есть с обмоткой.

Последний тип используется, если требуется уменьшить пусковой ток и отрегулировать частоту вращения асинхронного электродвигателя. Обычно речь идет о крановых электродвигателях, повсеместно используемых в крановых установках.

Кран обладает подвижностью и применяется в машинах постоянного тока. Это может быть генератор либо двигатель, а также универсальный двигатель, функционирующие по тому же принципу. Его используют в электроинструменте. Фактически универсальный двигатель — это тот же двигатель с постоянными показателями, в котором происходит последовательное возбуждение. Отличие касается лишь расчётов обмоток. Здесь отсутствует реактивное сопротивление. Оно бывает:

  • емкостным;
  • индуктивным.

Вот почему любой электроинструмент, если из него извлекается электронный блок, сможет работать и на постоянном токе. Но при этом напряжение в сети будет меньше. Принцип действия электродвигателя определяется сообразно тому, из каких компонентов он состоит и для каких целей предназначается.

Работа трехфазного асинхронного двигателя

Во время включения в сеть формируется вращающееся магнитное поле. Оно отмечается в статоре и проникает через короткозамкнутую обмотку ротора. В ней переходит в индукцию. После этого, в соответствии с законом Ампера, ротор начинает вращаться. Частота перемещения этого элемента зависит от частоты питающего напряжения и количества магнитных полюсов, представленных парами.

Разность между частотой вращения ротора и магнитного поля статора выражается в виде скольжения. Двигатель именуют асинхронным, потому что частота вращения магнитного поля у него сообразна с частотой вращения ротора. Синхронный двигатель имеет отличия в конструкции. Ротор дополняется магнитом постоянного типа либо электромагнитом. В нём имеются элементы, такие как для запуска беличья клетка и постоянные магниты. Также их роль могут выполнять электромагниты.

В асинхронном двигателе у магнитного поля статора частота вращения совпадает с аналогичным показателем у ротора. Для включения используют асинхронные электродвигатели вспомогательного типа либо ротор с короткозамкнутой обмоткой. Асинхронные двигатели смогли найти широкое применение во всех технических областях.

Особенно это актуально в отношении трехфазных двигателей, характеризующихся простотой конструкции. Они не только доступны по цене, но и надежнее в сравнении с электрическими. Ухода они не требуют почти никакого. Название асинхронный, присвоенное им, обусловлено несинхронным вращением ротора в таком двигателе. Если отсутствует трехфазная сеть, такой двигатель может включаться в сеть однофазного тока.

В составе статора асинхронного электродвигателя присутствует пакет. В нём имеются лакированные листы электротехнической стали, чья толщина составляет 0,5 мм. У них есть пазы, куда уложена обмотка. Три фазы обмотки соединены друг с другом треугольником или звездой, которые смещены на 120 градусов пространственно.

Если речь идет о роторе электродвигателя, в котором имеются контактные кольца в пазах, здесь отмечается ситуация, похожая на обмотку статора. Это актуально, если он включён звездой либо начальные концы фаз соединены тремя контактными кольцами, зафиксированными на валу. Когда двигатель запущен, можно подключить реостат на фазы обмотки для контроля частоты вращения. После успешного разбега контактные кольца коротко замыкаются, а потому обмотка ротора выполняет те же функции, что и в случае с короткозамкнутым изделием.

Читать еще:  Что такое и ее описание подушки двигателя

Современная классификация

По принципу формирования вращающего момента двигатели электрического типа делят на магнитоэлектрические и гистерезисные. Последняя группа отличается тем, что вращающий момент здесь формируется вследствие гистерезиса при чрезмерном намагничивании ротора. Такие двигатели не считаются классическими и не так распространены в промышленности. Наибольшее распространение получили магнитоэлектрические модификации, которые делятся на две большие группы, согласно потребляемой энергии. Это двигатели переменного и постоянного тока. Выпускаются также универсальные модели, которые способны питаться обоими видами электрического тока.

Основные особенности

Было бы правильно называть эти устройства электрическими нефазными. Это обусловлено тем, что фазы переключаются здесь непосредственно в двигателе. За счет этого мотор питается постоянным, как и переменным типами тока, с одинаковым успехом. Эта группа делится по способу переключения фаз и присутствию обратной связи. Они бывают вентильными и коллекторными.

Что касается типа возбуждения, коллекторные двигатели подразделяют на модели с самовозбуждением, моторы с независимым возбуждением от постоянных магнитов и электромагнитов. Первый тип, в свою очередь, классифицируется на моторы с последовательным, параллельным, смешанным возбуждением.

Бесколлекторные, или вентильные изделия, работают от электричества. В них переключение фаз происходит посредством специального электроблока, носящего название инвертора. Процесс этот может оснащаться обратной связью, когда пускают в ход датчик положения ротора либо без обратной связи. Такое устройство можно фактически позиционировать, как аналог асинхронного устройства.

Агрегаты пульсирующего тока

Такой двигатель является электрическим, и питание у него осуществляется пульсирующим электротоком. Конструкционные особенности его схожи с аналогичными особенностями у устройств постоянного тока. Конструктивные отличия его от двигателя с постоянными показателями состоят в присутствии шихтованных вставок для выпрямления переменного тока. Используют его на электровозах со специальными установками. Характерной особенностью является наличие компенсационной обмотки и значительного количества пар полюсов.

Модификации переменного тока

Двигатель представляет собой устройство, питание которого происходит с переменным током. Агрегаты эти бывают асинхронными и синхронными. Различие состоит в том, что в асинхронных машинах магнитодвижущая сила статора перемещается со скоростью вращения ротора. У асинхронного оборудования всегда наблюдается разница между скоростью вращения магнитного поля и ротора.

Синхронный электродвигатель работает от переменного тока. Ротор здесь вращается сообразно движению магнитного поля питающего напряжения. Синхронные электродвигатели делятся на модификации с обмотками возбуждения, с постоянными магнитами, а также на реактивные модификации, гистерезисные, шаговые, гибридные реактивные типы устройств.

Выделяют и так называемый реактивно-гистерезисный тип. Выпускают также модели с шаговыми агрегатами. Здесь определённое положение ротора фиксируется подачей питания на определенные зоны обмотки. Переход в другое положение достигается посредством снятия напряжения с одних обмоток и перемещения его в другие области. Вентильные реактивные модели электрического типа формируют питание обмоток посредством полупроводниковых элементов. Асинхронное устройство имеет частоту вращения ротора, отличную от частоты вращающегося магнитного поля. Она создается питающим напряжением. Такие модели получили на сегодня наибольшее распространение.

Универсальное коллекторное оборудование

Такой агрегат может работать на переменном и постоянном токе. Изготавливают его с последовательной обмоткой возбуждения при показателях мощности до 200 Вт. Статор выполняется из особой электротехнической стали. Обмотка возбуждения осуществляется при постоянном показателе напряжения полностью и частично при переменном показателе. Номинальное напряжение для переменного электротока составляют 127 и 220 В, аналогичные показатели для постоянного параметра равны 110 и 220 В. Находят применение в электроинструментах и бытовых аппаратах.

То, как работает электродвигатель, зависит от его принадлежности к тому или иному типу оборудования. Модификации переменного тока с питанием от промышленной сети 50 Гц не дают получить частоту вращения больше 3000 оборотов в минуту. Вот почему для получения значительных частот используют коллекторный мотор электрического типа. Он к тому же легче и меньше по размерам, нежели устройства с переменными показателями с аналогичной мощностью.

В их отношении используют специальные передаточные механизмы, преобразующие кинематические параметры механизма до приемлемых. При использовании преобразователей частоты и при наличии сети повышенной частоты двигатели переменного тока легче и меньше коллекторных изделий.

Ресурс асинхронных моделей с переменными показателями значительно выше, нежели у коллекторных. Определяется он состоянием подшипников и особенностями обмоточной изоляции.

Синхронный двигатель, у которого есть датчик положения ротора и инвертор, считается электронным аналогом коллекторного двигателя постоянного тока. Фактически он является коллекторным электродвигателем с последовательно включенными обмотками статора. Они идеально оптимизированы для работы с бытовой электросетью. Такую модель, независимо от полярности напряжения, можно вращать в одну сторону, так как последовательное соединение обмоток и ротора гарантирует смену полюсов из магнитных полей. Соответственно, результат остается направленным в одну сторону.

Статор из магнитного мягкого материала применим для работы на переменном токе. Это возможно, если сопротивление в перемагничивании у него незначительное. Чтобы снизить потери на вихревые токи, статор делают из изолированных пластин. Он получается наборным. Его особенностью является то, что потребляемый ток ограничивается за счёт индуктивного сопротивления обмоток. Соответственно, момент двигателя оценочно становится максимальным и варьируется от 3 до 5. Чтобы приблизить к механическим характеристикам двигатели общего назначения, применяются секционные обмотки. Они имеют отдельные выводы.

Примечательно, что для передвижения некоторыми видами бактерий используется электродвигатель из нескольких белковых молекул. Он способен трансформировать энергию электрического тока в форме движения протонов во вращении жгутика.

Синхронная модель возвратно-поступательного движения работает таким образом, что подвижная часть устройства оснащена постоянными магнитами. Они зафиксированы на шторке. Посредством неподвижных элементов постоянные магниты находятся под воздействием магнитного поля и проводят перемещение штока возвратно-поступательным методом.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector