Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как работает электромотор

Как работает электромотор?

Как вы уже догадались, все бытовые приборы можно разделить на две группы: использующие тепловые свойства электричества и преобразующие электрическую энергию в механическую.

Электрические моторы имеются в большинстве бытовых приборов, и часто в случае неисправности двигателя бытовой прибор или выбрасывают как негодный, или несут в ремонт, даже не выяснив причину неисправности. Проблема в том, что не многие разбираются в электрических двигателях, а потому не могут самостоятельно не только ремонтировать, но и установить причину неполадки.

А ведь на самом деле, если знать устройство электрических двигателей, то можно разобраться и в устройстве всех бытовых приборов, так как во всех случаях мотор является основным агрегатом, вырабатывающим механическую энергию, а все остальные детали и узлы бытового устройства предназначены лишь для того, чтобы эту механическую энергию можно было применять в быту.

По историческим меркам электрические двигатели появились сравнительно недавно – всего сто лет назад, но они успели настолько прочно войти в быт, что без их участия уже невозможно обойтись. Первые двигатели существовали в виде математических моделей, а также экспериментальных устройств, на примере магнита и проводника показывающих возможность превращения электрической энергии в механическую.

Со временем знания об электричестве совершенствовались, дополнялись новыми сведениями, создавались все новые и новые модели электрических двигателей, в результате чего и появились индукционные двигатели, работающие на постоянном и переменном токе, которые и применяются в настоящее время в быту и в производстве.

В основе действия этого устройства лежит закон самоиндукции, открытый ученым М. Фарадеем, одним из основателей электродинамики. Согласно этому закону вокруг всякого проводника, по которому проходит электрический ток, создается магнитное поле.

Электрический двигатель представляет собой статор и ротор с замкнутыми обмотками, по которым протекает электрический ток. В результате между статором и ротором создается вихревой магнитный поток, который приводит ротор в движение. Все остальное, как говорится, дело техники. С помощью осевой, ременной, червячной или другой передачи механическое движение передается рабочим узлам, которые и осуществляют работу бытового прибора.

Чтобы магнитный поток создавал механическое движение, необходимо определенное расположение обмоток статора и ротора. В замкнутых обмотках протекают токи, сдвинутые во времени. Обмотки должны располагаться так, чтобы получить круговое поле, что возможно при расположении двух пар обмоток под прямым углом (двухфазный двигатель) или трех обмоток под углом 120° (трехфазный двигатель). Это простейшие модели двигателей, наиболее часто применяемые. Не исключено применение в быту и многофазных двигателей.

В быту применяются двигатели, работающие и на постоянном и на переменном токе. Как правило, двигатели, работающие на постоянном токе, применяются в бытовых приборах индивидуального пользования, а также в домашней электронике, так как обладают меньшей мощностью по сравнению с двигателями, работающими на переменном токе.

Чтобы бытовые приборы, имеющие такие двигатели, можно было подключать к сети с напряжением 220V, в цепи имеется индукционная катушка, которая обладает свойством не пропускать токи определенных частот. Индукционную катушку также принято называть дросселем, или выпрямителем напряжения, так как именно она и преобразует переменный ток в постоянный.

Многие приборы работают одновременно и на постоянном и на переменном токе. Это можно объяснить тем, что бытовой прибор рассчитан на подключение к различным источникам питания: к сети, к аккумуляторам, к выпрямителю переменного тока, чтобы прибором было удобно пользоваться.

В таком случае прибор имеет индукционную катушку, выпрямляющую переменный ток. При включении прибора выпрямитель преобразует его в постоянный, от него и работает электрический двигатель. Если прибор следует подключить к источнику постоянного тока, достаточно установить переключатель в соответствующее положение и прибор работает уже без индукционной катушки, что позволяет пользоваться сменными элементами питания (батарейками), аккумуляторами, универсальными блоками питания.

Двигатели, работающие на переменном токе, применяются в таких бытовых приборах, как стиральные машины, пылесосы, вентиляторы и др., для работы которых нужны двигатели большей мощности.

Двигатели переменного тока принято делить на синхронные, асинхронные и коллекторные. Двигатель может быть выполнен с внутренним или внешним ротором.

Двигатель с внутренним ротором представляет собой статор с обмотками, заключенный в корпус, внутри статора располагается ротор, также имеющий обмотки. Как уже упоминалось, вращение ротора осуществляется за счет вихревого магнитного потока, образующегося в пространстве между статором и ротором.

В синхронных двигателях скорость вращения ротора равна скорости вращения магнитного вихревого потока. В асинхронных двигателях эта скорость не совпадает: ротор может вращаться быстрее или медленнее, может вращаться в противоположную сторону. Если к обмоткам статора и ротора подсоединен механический преобразователь частоты и числа фаз, двигатель является коллекторным.

Двигатель может иметь и внешний ротор. В таком случае статор с обмотками располагается внутри ротора, вращающегося все по тому же закону самоиндуктивности. К обмоткам ротора электричество подводится с помощью скользящих контактов, которые принято называть щетками.

Двигатель с внешним ротором имеет высокий показатель инертности, а потому его применяют там, где требуется инертность. В быту такой двигатель можно увидеть, например, на дрели, причем щетки, как правило, видно через вентиляционные отверстия на корпусе.

Читать еще:  Что такое пятиминутка для промывки двигателя

Иногда бывает так, что из‑за вибрации или по другим причинам скользящие контакты прилегают к обмоткам не плотно, это приводит к тому, что при замыкании цепи двигатель не работает, возникает такое ощущение, что цепь разомкнута. На самом деле достаточно плотнее прижать щетки, и двигатель заработает снова. Бывает даже так, что двигатель работает в горизонтальном положении, но стоит его поставить вертикально – он отключается. В таком случае причина неполадки не может быть в чем‑то другом, только как в скользящих контактах.

Источники электрического тока

Самые первые автомобили не имели источников электрического тока. Для получения искры в системе зажигания использовали магнето, которые не нуждаются во внешнем источнике энергии. В качестве осветительных приборов использовались ацетиленовые фонари. Двигатель пускали вручную с помощью заводной рукояти. Со временем на автомобили стали устанавливать аккумуляторные батареи, которые использовались как источники электрического тока для освещения, пуска двигателя с помощью стартера, привода стеклоочистителей и других электропотребителей и, наконец, для работы всех систем автомобиля при неработающем двигателе или при малой частоте его вращения. В качестве автомобильных аккумуляторных батарей в основном применяются свинцово-кислотные аккумуляторные батареи, собранные из отдельных аккумуляторов секций.
Свинцово-кислотные аккумуляторные батареи тяжелые и не самые эффективные из существующих на сегодняшний день, но они относительно дешевы и способны в течение короткого времени отдавать ток в несколько сотен ампер, необходимый для питания электрического стартера. Свинцово-кислотный аккумулятор состоит из свинцовых электродов, погруженных в емкость с раствором серной кислоты (электролитом). В результате взаимодействия электродов с электролитом на них возникает разность потенциалов. Отдельный аккумулятор имеет напряжение около 2 В. Для того чтобы получить напряжение, необходимое для питания электрической сети автомобиля, аккумуляторы соединяют последовательно и собирают в аккумуляторную батарею. Напряжение бортовой сети легковых автомобилей составляет 12 В. Для получения этого напряжения соединяют последовательно шесть отдельных аккумуляторов. На некоторых грузовых автомобилях с дизельным двигателем в бортовой электрической сети используют напряжение 24 В. Для пуска дизелей требуется более высокое напряжение, которое необходимо для работы более мощного стартера. На таких автомобилях используют две соединенные последовательно аккумуляторные батареи с напряжением 12 В.
При разряде аккумуляторной батареи плотность электролита падает. При зарядке аккумуляторной батареи к ее выводам подводится электрический ток. Батарея заряжается, а плотность электролита повышается.

Для зарядки аккумуляторов и питания всех потребителей тока при движении потребовались генераторы электрического тока. Сначала применялись генераторы постоянного тока, а после появления надежных полупроводниковых выпрямителей они были вытеснены более эффективными генераторами переменного тока.
Генераторы переменного тока мощнее, обеспечивают возможность зарядки аккумулятора при малых оборотах двигателя, но требуется специальный выпрямитель, чтобы преобразовать переменный ток в постоянный. Для поддержания постоянной величины напряжения (примерно 14 В) независимо от оборотов двигателя используются регуляторы напряжения. Современные электронные регуляторы имеют небольшие размеры и, как правило, устанавливаются непосредственно на генераторе.
В автомобилях используется однопроводная схема электрооборудования. Вторым проводом («масса») служит металлический кузов автомобиля. На большинстве автомобилей с «массой» соединяется отрицательный полюс источников тока.

По мере совершенствования конструкции автомобиля появляется все больше потребителей электрического тока, а также много новых электронных систем, сервоприводов с электродвигателями и т. д. Мощности применяемых сегодня генераторов переменного тока, питающих электрооборудование автомобиля напряжением 14 В, которое требуется для зарядки 12-вольтовых аккумуляторных батарей, становится недостаточно. Потребная мощность источника электрического тока на современных автомобилях доходит до 2 кВт. Существующие генераторы с трудом справляются с возросшей нагрузкой. Компания BMW разработала генератор с жидкостным охлаждением, включенным в систему охлаждения двигателя.
Перспективный путь состоит в том, чтобы поднять выходную мощность генератора переменного тока как минимум до 5 кВт. На сегодняшний день является практически решенным вопрос о переходе на электрооборудование автомобиля с напряжением 36 вместо 12 В, а генераторы переменного тока будут работать с напряжением 42 вместо 14 В. Практически это максимально высокое напряжение, которое можно использовать без дополнительных мер безопасности.
Перевод электрических систем на 36 В требует применения специальных аккумуляторных батарей. Это сделать не так трудно, т. к. все батареи, вне зависимости от их напряжения, состоят из соответствующего числа отдельных аккумуляторов. Кроме того, разрабатываются более эффективные аккумуляторы и батареи на топливных элементах.

Сейчас пуск двигателей производится с помощью электрических стартеров, которые используют напряжение 12 или 24 В. Основу таких стартеров составляет электродвигатель постоянного тока с электромагнитным дистанционным включением. Они питаются от аккумуляторной батареи. Стартер приводит во вращение маховик двигателя через зубчатую передачу.

Переход к более высокому напряжению дает возможность использовать стартеры-генераторы, встроенные в маховик двигателя. С помощью таких устройств не только легко проворачивается коленчатый вал ДВС при пуске, что дает возможность глушить двигатель при каждой остановке и пускать его при троганье, но и использовать его при интенсивном разгоне совместно с основным двигателем.

Читать еще:  Датчики температуры охлаждения двигателя на шкоду октавия

Сравнение автомобилей с разными типами электропроводки. Применение мультиплексных линий дает возможность существенно упростить электропроводку автомобиля

Использование напряжения 36 В также выгодно для электропроводки. Более высокое напряжение означает, что та же самая мощность может быть передана по более тонким проводам. В большинстве современных автомобилей электропроводка стала очень сложной и дорогой. К каждому из многочисленных электрических устройств автомобиля должны быть подведены как силовые, так и управляющие провода. Последние с помощью выключателей и реле замыкают или размыкают соответствующие цепи. Число управляющих проводников может быть очень большим. Сегодня большинство производителей автомобилей начинают использовать другой подход при конструировании электропроводки. Силовые кабели остаются, а управляющие заменяются мультиплексными линиями. Управляющие сигналы для различных устройств могут передаваться по высокоскоростным шинам с использованием кодированных сигналов. При таком подходе электропроводка значительно упрощается и появляется возможность простого диагностирования неисправностей систем автомобиля с помощью компьютера.

Какими явлениями сопровождается электрический ток?


Наличие тока в электроцепи всегда проявляется каким-либо действием. Например, работа при конкретной нагрузке или какое-то сопутствующее явление. Следовательно, именно действие электротока говорит о его присутствии как таковом в той или иной электроцепи. То есть, если работает нагрузка, то ток имеет место быть.

Известно, что электрический ток вызывает различного рода действия. Например, к таковым относятся тепловые, химические, магнитные, механические или световые. При этом различные действия электрического тока способны проявлять себя одновременно. Более подробно о всех проявлениях мы расскажем Вам в данном материале.

Тепловое явление

Известно, что температура проводника повышается при прохождении через него тока. В качестве таких проводников выступают различные металлы или их расплавы, полуметаллы или полупроводники, а также электролиты и плазма. Например, при пропускании через проволоку из нихрома электрического тока происходит ее сильное нагревание. Данное явление используют в приборах нагрева, а именно: в электрических чайниках, кипятильниках, обогревателях и т.п. Электродуговая сварка отличается самой большой температурой, а именно нагрев электродуги может достигать до 7 000 градусов по Цельсию. При такой температуре достигается легкое расплавление металла.

Количество выделяемой теплоты напрямую зависит от того, какое напряжение было приложено к данному участку, а также от электротока и времени его прохождения по цепи.

Для расчета объемов выделяемой теплоты используется или напряжение, или сила тока. При этом необходимо знание показателя сопротивления в электроцепи, поскольку именно оно провоцирует нагрев из-за ограничения тока. Также количество тепла можно определить при помощи тока и напряжения.

Химическое явление

Химическое действие электротока заключается в электролизе ионов в электролите. Анод при электролизе присоединяет к себе анионы, катод – катионы.

Иными словами, во время электролиза на электродах источника тока происходит выделение определенных веществ.

Приведем пример: в кислотный, щелочной или же солевой раствор опускаются два электрода. После пропускается по электроцепи ток, что провоцирует создание положительного заряда на одном из электродов, на другом – отрицательного. Ионы, которые находятся в растворе, откладываются на электроде с иным зарядом.

Химическое действие электротока применяется в промышленности. Так, используя данное явление, осуществляют разложение воды на кислород и водород. Кроме того, при помощи электролиза получают металлы в их чистом виде, а также осуществляют гальваническое покрытие поверхности.

Магнитное явление

Электрический ток в проводнике любого агрегатного состояния создает магнитное поле. Иными словами, проводник при электрическом токе наделяется магнитными свойствами.

Таким образом, если к проводнику, в котором протекает электроток, приблизить магнитную стрелку компаса, то та начнет поворачиваться и займет к проводнику перпендикулярное положение. Если же на сердечник из железа намотать данный проводник и пропустить сквозь него постоянный ток, то данный сердечник примет свойства электромагнита.

Природа магнитного поля всегда заключается в наличии электрического тока. Объясним: движущиеся заряды (заряженные частицы) образуют магнитное поле. При этом токи противоположного направления отталкиваются, а одинакового направления – притягиваются. Данное взаимодействие обосновано магнитным и механическим взаимодействием магнитных полей электротоков. Выходит, что магнитное взаимодействие токов первостепенно.

Магнитное действие применяется в трансформаторах и электромагнитах.

Световое явление

Самый простой пример светового действия – лампа накаливания. В данном источнике света спираль достигает нужной температурной величины посредством проходящего сквозь нее тока до состояния белого каления. Тем самым и излучается свет. В традиционной лампочке накаливания всего лишь пять процентов всей электроэнергии расходуется на свет, остальная же львиная доля преобразуется в тепло.

Более современные аналоги, например, люминесцентные лампы наиболее эффективно преобразуют электроэнергию в свет. То есть, около двадцати процентов всей энергии лежит в основе света. Люминофор принимает УФ-излучение, идущее от разряда, что возникает в ртутных парах или в инертных газах.

Самая эффективная реализация светового действия тока происходит в светодиодных источниках света. Электрический ток, проходя через pn-переход, провоцирует рекомбинацию носителей заряда с излучением фотонов. Лучшими led излучателями света являются прямозонные полупроводники. Изменяя состав данных полупроводников, возможно создание светодиодов для различных световых волн (разной длины и диапазона). Коэффициент полезного действия светодиода достигает 50 процентов.

Читать еще:  Датчики температуры для двигателя ваз 21083

Механическое явление

Напомним, что вокруг проводника с электрическим током возникает магнитное поле. Все магнитные действия преобразуются в движение. Примером служат электрические двигатели, магнитные подъемные установки, реле и др.

В 1820 году Андре Мари Ампер вывел известный всем «Закон Ампера», который как раз описывает механическое действие одного электротока на другой.

Данный закон гласит, что параллельные проводники с электрическим током одинакового направления испытывают притяжение друг другу, а противоположного направления, наоборот, отталкивание.

Также закон ампера определяет величину силы, с которой магнитное поле воздействует на небольшой отрезок проводника с электротоком. Именно данная сила лежит в основе функционирования электрического двигателя.

Электрический двигатель

Определение.

Электрический двигатель – механизм или специальная машина, предназначенная для преобразования электрической энергии в механическую, при котором так же выделяется тепло.

Предыстория.

Уже в 1821 году, знаменитый британский ученый Майкл Фарадей продемонстрировал принцип преобразования электромагнитным полем электрической энергии в механическую энергию. Установка состояли из подвешенного провода, которых окунался в ртуть. Магнит устанавливался посередине колбы с ртутью. При замыкании цепи, провод начинал вращение вокруг магнита, демонстрируя то, что вокруг провода, эл. током, образовывалось электрическое поле.

Эту модель двигателя часто демонстрировали в школах и университетах. Данный двигатель считается самым простым видом из всего класса электродвигателей. Впоследствии он получил продолжение в виде Колеса Барлова. Однако новое устройство носило лишь демонстрационный характер, поскольку вырабатываемые им мощности были слишком малы.

Ученые и изобретатели работали над двигателем с целью использования его в производственных нуждах. Все они стремились к тому, чтобы сердечник двигателя двигался в магнитном поле вращательно-поступательно, на манер поршня в цилиндре паровой машины. Русский изобретатель Б.С. Якоби сделал все гораздо проще. Принцип работы его двигателя заключался в попеременном притяжении и отталкивании электромагнитов. Часть электромагнитов были запитаны от гальванической батареи, и направление течения тока в них не менялась, а другая часть подключалась к батарее через коммутатор, благодаря которому изменялось направление течения тока через каждый оборот. Полярность электромагнитов менялась, и каждый из подвижных электромагнитов то притягивался, то отталкивался от соответствующего ему неподвижного электромагнита. Вал приходил в движение.

электродвигатель Бориса Якоби Изначально мощность двигателя была небольшой и составляла всего 15 Вт, после доработок, Якоби удалось довести мощность до 550 Вт.. 13 сентября 1838 году, лодка, оборудованная этим двигателем, плыла с 12 пассажирами по Неве, против течения, развивая при этом скорость в 3 км/ч. Двигатель был запитан от большой батареи, состоящей из 320 гальванических элементов. Мощность современных электрических двигателей превышает 55 кВт. По вопросом прибретения электрических двигателей смотрите здесь.

Принцип действия.

В основу работы электрической машины заложено явление электромагнитной индукции (ЭМИ). Явление ЭМИ заключается в том, что при любом изменении магнитного потока, пронизывающего замкнутый контур, в нем (контуре) образуется индукционный ток.

Сам двигатель состоит из ротора (подвижной части – магнита или катушки) и статора (неподвижной части – катушки). Чаще всего конструкция двигателя представляет собой две катушки. Статор обложен обмоткой, по которой, собственно, и течет ток. Ток порождает магнитное поле, которое воздействует на другую катушку. В ней, по причине ЭМИ, так же образуется ток, который порождает магнитное поле, действующее на первую катушку. И так все повторяется по замкнутому циклу. В итоге, взаимодействие полей ротора и статора создает вращающий момент, приводящий в движение ротор двигателя. Таким образом, происходит трансформация электрической энергии в механическую, которую можно использовать в различных приборах, механизмах и даже в автомобилях.

Вращающееся магнитное поле

Вращение электромотора

Классификация электрических двигателей.

По способу питания:

двигатели постоянного тока – запитываются от источников постоянного тока.
двигатели переменного тока — запитываются от источников переменного тока.
универсальные двигатели – запитываются как от постоянного, так и переменного тока.

По конструкции:

Коллекторный электродвигатель — электродвигатель, в котором в качестве датчика положения ротора и переключателя тока используется щеточноколлекторный узел.

Бесколлекторый электродвигатель – электродвигатель, состоящий из замкнутой системы, в которой используются: системы управления (преобразователь координат), силовой полупроводниковый преобразователь (инвертор), датчик положения ротора (ДПР).

• С приведением в действие постоянными магнитами;
• С параллельным соединением якоря и обмоток возбуждения;
• С последовательным соединением якоря и обмоток возбуждения;
• Со смешанным соединением якоря и обмоток возбуждения;

трехфазные асинхронные двигатели

По количеству фаз:

Однофазные – запускаются вручную, либо же имеют пусковую обмотка или фазосдвигающую цепь.
Двухфазные
Трехфазные
Многофазные

По синхронизации:

Синхронный электродвигатель – электрический двигатель переменного тока с синхронным движением магнитного поля питающего напряжения и ротора.
Асинхронный электродвигатель – электрический двигатель переменного тока с отличающейся частотой движения ротора и магнитного поля, порождаемого питающим напряжением.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector