Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как подключить электродвигатель: 220В, 380В

Как подключить электродвигатель: 220В, 380В

  1. Соединение однофазных электродвигателей
  2. Способы соединения для трехфазных электродвигателей
  3. Как включить трехфазный электрический двигатель в однофазную сеть
  4. Применение магнитного пускателя

Электрические двигатели встречаются намного чаще, чем кажется. Маленький мотор спрятан в микроволновой печи, стиральной машине, кухонном комбайне и вентиляторе. Громоздкие агрегаты заставляют работать автомобили и производственные станки. Но мало кто знает, как подключить электродвигатель. Схема подключения зависит от того, к какому источнику питания подключается мотор: 220 или 380 Вольт.

Соединение однофазных электродвигателей

Если мотор предназначен для питания от сети 220 Вольт, то внутри такого агрегата прячутся 2 обмотки. Одна – рабочая, другая – пусковая. Если бы мы попытались ограничиться только одной намоткой, то создать вращающееся магнитное поле нам не удалось бы. Оно было бы пульсирующим. Вращаться заставляет пусковая обмотка, сдвинутая относительно рабочей по фазе на 90 градусов. После разгона вала она отключается. Причем сдвиг фаз можно обеспечить только включением в цепь дополнительного сопротивления, индуктивности или конденсатора – наиболее распространенного элемента.

На рисунке ниже представлены: схема с омическим и емкостным сдвигами фаз для подключения двигателя 220. Последняя схема имеет три варианта:

  • Только с рабочей емкостью (при высоких нагрузках);
  • Только с пусковым, или вспомогательным, накопителем (при тяжелом пуске);
  • С пусковым и рабочим (при запуске с нагрузкой и тяжелой работе).

Чтобы определить пусковую и рабочую намотку, посмотрите на сечения проводов. Если проводник толстый – то он рабочий, если тонкий – вспомогательный. Однако есть двигатели 220, в которых вспомогательная обмотка всегда подключена к источнику питания 220 Вольт, как и рабочая. В таком случае между проводами нет разницы в толщине. И определить их назначение получится только, воспользовавшись мультиметром. Схема выше показывает, какие примерно сопротивления должны быть между выводами намоток.

Внимание! Рассчитать емкость конденсатора легко, если принять во внимание, что рабочий накопитель должен составлять 0,7-0,8 мкФ на 1 кВт мощности мотора. А для вспомогательного нужно брать емкость в 2,5 раза больше.

Способы соединения для трехфазных электродвигателей

Электродвигатели 380 оснащаются тремя обмотками, у каждой из которых – по 2 конца. Эти концы выводятся за корпус мотора. Их так и называют – выводы. Чтобы запустить двигатель, достаточно правильно соединить намотки: фазосдвигающих элементов не потребуется, потому что при питании от 380 Вольт каждая фаза и так сдвинута относительно других.

Подключение может производиться 3 способами:

  • Треугольник;
  • Звезда;
  • Схема звезда-треугольник.

Схема подключения треугольником хороша тем, что позволяет достичь максимально возможной мощности. Однако при запуске значения пусковых токов приближаются к критическим, что негативно сказывается на долговечности двигателя. Звезда в этом отношении выигрывает, потому что пуск отличается плавностью. Но такое подключение не позволит выдать больше 70% мощности от заявленной в паспорте. Если вам больше и не нужно, то смело подключайте мотор звездой.

Если же вы заинтересованы в получении максимальной мощности, но хотите защитить обмотки от пробоя во время, когда пусковые токи максимальны, вам потребуется схема подключения, которая сочетает в себе звезду и треугольник. В таком случае запускается машина звездой, а работает – треугольником. Но подключение должно производиться через магнитный пускатель, который позволит делать переключение между схемами после разгона вала.

При соединении обмоток двигателя 380 звездой, начала каждой из них соединяются в одной точке. Для этого понадобится перемычка, которой будут объединены входы намоток, как на рисунке ниже. К концам же будет подаваться питание 380 Вольт с помощью трех фаз: А, В и С. Каждая из фаз подключается только к одному концу.

При подключении обмоток мотора 380 треугольником, начало одной обмотки соединяется с концом последующей. А начало последней соединяется с концом третьей. Тогда начало третьей будет подключаться к концу первой. Получается последовательное соединение, в котором можно выделить 3 вершины, как у треугольника: именно к ним и подается питание с каждой из трех фаз.

Но оптимальный вариант подключения электродвигателя 380 к сети 380 Вольт – это звезда, переключаемая после разгона на треугольник. Это можно делать, если подключать через магнитный пускатель. Если его у вас нет, то соединять можно через пакетный переключатель или через временное пусковое реле.

Посмотрите на рисунок: если замкнуты ключи К1 и К2, то работает треугольник. А если К1 и К3 – то звезда.

Читайте более подробно про подключение асинхронного двигателя звездой, треугольником и звездой-треугольником.

Как включить трехфазный электрический двигатель в однофазную сеть

Иногда оправдано включение трехфазного мотора в сеть 220. Ждать чудес в этом случае не приходится: мощность будет невысокой. Но для ее максимально возможного выхода необходимо соединять обмотки в треугольник. Тогда одна вершина подключается к фазе под напряжением 220 Вольт, другая – тоже к ней через фазосдвигающие элементы (обычно конденсаторы), а последняя – к нулю.

Понадобится два конденсатора: рабочий и пусковой. Они подсоединяются параллельно друг другу. Расчет емкостей при подключении 380В к 220 происходит так же, как и при включении однофазного двигателя к той же сети 220 В.

Применение магнитного пускателя

Пускатель удобен в использовании не только при схеме звезда с треугольником, но и в каждом отдельном случае. Подключая через него двигатель 380, удобно организовать пуск, остановку и изменение направления вращения ротора. Пускатель состоит из двух частей:

  • Силовая часть;
  • Управляющий блок.
Читать еще:  Электросхема для запуска двигателя от оки

Управляющая часть представляет собой кнопочный пост или отдельные кнопки. Их должно быть хотя бы 2. Первая кнопка – для запуска (нормально-разомкнутая черного или зеленого цвета). Вторая – для остановки (нормально-замкнутая красного цвета). Если в электродвигателе, подключаемом к 380 В, предусмотрен реверс, то понадобится еще одна нормально-разомкнутая кнопка.

Пускатель, а точнее его силовая часть, питается от переменного трехфазного тока. Выключение происходит через автовыключатель QF1 с тремя полюсами. Магнитный пускатель также снабжен тремя парами контактов. На рисунке они обозначены 1L1-2T1, 3L2-4T2 и 5L3-6T3. Трехфазный мотор — просто М.

Управляется пускатель цепью, питающейся от первой фазы – «А». В нее включена кнопка остановки электродвигателя, обозначенная SB1, а также кнопка пуска – SB2. Пускатель соединен с управляющей цепью через катушку КМ1. У него есть добавочный контакт – это 13НО-14НО. Он соединяется параллельно пускающей кнопке.

Как подключить трехфазный двигатель к сети 220 или 380 В?

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Схемы подключения обмоток двигателя

В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

  • Звезда;
  • Треугольник;
  • Звезда и треугольник.

Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

Пример обозначения на шильде

Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.

Звезда

Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:

Схема подключения звезда

Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.

Если рассматривать данную схему на примере борна, выглядеть оно будет так:

Соединение обмоток звездой

Треугольник

Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.

Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:

Схема подключения треугольник

Как видите, соединение производится от A2 к B1, от B2 к C1, от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.

Соединение обмоток треугольником

Варианты подключения

Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

В однофазную сеть

Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.

Читать еще:  Что такое драйвер двигателя постоянного тока

Графически функция отставания напряжения от тока будет выглядеть следующим образом:

Изменение тока и напряжения на емкости и индуктивности

Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:

Схема включения в однофазную сеть

Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

Расчет конденсаторного пуска производится по формуле:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

В трёхфазную сеть

В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.

Схема включения в трехфазную сеть

На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

  • подача напряжения на двигатель от сети производится через рубильник 1.
  • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
  • после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
  • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
  • защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте: https://www.asutpp.ru/elektromagnitnyj-puskatel.html

Видео по теме

Как подключить трехфазный двигатель 380 в однофазную сеть 220

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 – 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.

Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» – для 380 В или на «треугольник» – на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
-обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» – понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» – обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».

Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника.

Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.

Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам:

  1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
    режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
    как следствие увеличенного тока в обмотке.
  2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
    /- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
    может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
    к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
    стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
    напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
    ненагруженного двигателя можно обойтись только рабочим конденсатором.
Читать еще:  Что такое максимальное напряжение двигателя постоянного тока

Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле:
Cмкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.

У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому подходу я не призываю, просто информация для размышления. Кроме того, если включить 160-ти вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.

Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска, затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно- графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.

Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Правила чтения электросхем и чертежей

Для того чтобы правильно читать электросхемы и чертежи, человеку нужно знать: условные обозначения контактов, трансформаторов, двигателей, выпрямителей, ламп и т. п.; условные обозначения, с которыми часто приходиться сталкиваться в силу своей профессии; схемы наиболее распространенных узлов электроустановок; свойства последовательного и параллельного соединений контактов, обмоток, сопротивлений, индуктивностей и емкостей.

Дробление общей схемы на простые цепи. Любая электроустановка удовлетворяет определенным условиям действия. Поэтому при чтении схем, во-первых, нужно выявить эти условия, во-вторых — определить, отвечают ли полученные условия задачам, которые должны электроустановкой решаться, в-третьих, следует проверить, не получились ли попутно «лишние» условия, и оценить их последствия. Для решения этих вопросов пользуются несколькими приемами.

Первый из них состоит в том, что схема электроустановки мысленно расчленяется на простые цепи, которые сначала рассматривают отдельно, а затем в сочетаниях.

Простая цепь включает источник тока (батарея, вторичная обмотка трансформатора, заряженный конденсатор и т. п.), приемник тока (двигатель, лампа, обмотка реле и т. п.), прямой провод (от источника тока к приемнику), обратный провод (от приемника тока к источнику) и один контакт аппарата (выключателя, реле и т. п.).

При чтении электрической схемы нужно сначала мысленно расчленить ее на простые цепи, чтобы проверить возможности каждого элемента, а затем рассмотреть их совместное действие.

Реальность схемных решений

Наладчики хорошо знают, что не всегда могут быть осуществлены на деле схемные решения, хотя они не содержат явных ошибок. Иными словами, проектные электрические схемы не всегда реальны. Поэтому одна из задач чтения электрических схем состоит в том, чтобы проверить, могут ли быть выполнены заданные условия.

Нереальность схемных решений обычно имеет в основном следующие причины:

  • не хватает энергии для срабатывания аппарата;
  • в схему проникает «лишняя» энергия, вызывающая непредвиденное срабатывание пли препятствующая своевременному отпусканию электрического аппарата;
  • не хватает времени для совершения заданных действий;
  • аппаратом задана установка, которая не может быть достигнута;
  • совместно применены аппараты, резко отличающиеся по свойствам;
  • не учтены коммутационная способность, уровень изоляции аппаратов и проводки,
  • не погашены коммутационные перенапряжения;
  • не учтены условия, в которых электроустановка будет эксплуатироваться;
  • при проектировании электроустановки за основу принимается ее рабочее состояние, но не решается вопрос о том, как ее привести в это состояние и в каком состоянии она окажется, например, в результате кратковременного перерыва питания.
голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector