Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от перегрузки на основе тепловой модели

Защита от перегрузки на основе тепловой модели

Перегрузка электродвигателей вызывает чрезмерный нагрев их обмоток и может привести к повышенному износу или тепловому пробою изоляции. Допустимое время перегрузки находится в обратнопропорциональной зависимости от квадрата величины тока перегрузки. Поэтому защита от перегрузки двигателя на аналоговых реле выполняется с использованием обратнозависимой от тока выдержки времени (индукционный элемент реле типа РТ-80). Вместе с тем, такой принцип выполнения защиты не отслеживает температуру защищаемого объекта. При повторном пуске двигателя с горячего состояния реле РТ-82 имеет такую же выдержку времени, как и при пуске холодного двигателя.

Более совершенный принцип выполнения защиты от перегрузки используется в цифровых реле, в которых температура защищаемого объекта косвенно отслеживается как при нагреве, так и при охлаждении. Защита срабатывает, когда интегральная температура превысит допустимое значение.

Тепловая модель двигателя описывается следующим выражением:

, (7.7)

где – интегральная температура модели в относительных единицах;

– начальная температура, с которой двигатель начинает охлаждаться;

I* – кратность тока перегрузки по отношению к значению номинального тока двигателя, увеличенному на 5 %;

t – текущее время, с; Т – тепловая постоянная времени, с.

р – коэффициент изменения начальной температуры модели, значение которого принимается в зависимости от заданных условий.

Первое слагаемое выражения (7.7) отражает процесс нагрева, а второе – охлаждение двигателя.

В качестве тепловой характеристики двигателя в зарубежной практике используется параметр t, под которым подразумевается предельно допустимое время нахождения холодного двигателя в заторможенном состоянии при 6-кратном токе. У обычных двигателей параметр t превышает время пуска примерно в два раза (t»2 tп). Существует однозначная связь между постоянной времени Т и параметром t, что вытекает из уравнения (6.3) после его решения относительно t:

(7.8)

Из выражения (7.8) постоянную времени нагрева Тн можно определить по формуле:

где tп – время пуска, определяемое из опыта пуска двигателя при полной загрузке.

После отключения двигателя процесс его остывания характеризуется постоянной времени остывания Т, значение которой намного больше постоянной времени нагрева:

Это объясняется отсутствием принудительной вентиляции остановленного двигателя.

Ниже на конкретном примере показано как тепловая модель цифрового реле отслеживает температуру обмотки двигателя при его включении и отключении.

Предположим, из опытных данных известно, что кратность пускового тока двигателя равна 6Iном, а время пуска – tп = 5 с. Тогда:

Тн = 60×5 = 300 с; Т = 4Тн = 4×300 = 1200 с.

Согласно ПТЭ двигатели обязаны обеспечивать 2 пуска из холодного состояния и 1 из горячего состояния. Поэтому в тепловой модели принимаем р = 0,5 при и р = 1 при .

При включении двигателя из холодного состояния (qнач = 0) температуру его обмотки к концу пуска, определим по выражению (7.7):

т.е. двигатель будет нагрет до 54 % допустимой температуры.

Если после окончания пуска двигатель перейдет в режим нормальной работы с номинальным током, то процесс изменения температуры будет описываться выражением (7.7), в котором коэффициент р=1. Например, спустя 10 мин (600 с) после пуска температура двигателя составит:

Установившееся же значение температуры двигателя нормального режима при t = ¥, составит:

Следует отметить, что значение допустимой (100 %-ной) температуры двигателя в среднем составляет 120…135 о С.

Можно показать, что защита разрешит пуск двигателя, работающего с полной загрузкой и из горячего состояния при температуре равной 91 % (здесь р принимается равным 0,5):

Как видно, при самозапуске двигателя (из горячего состояния) его температура не превысит допустимого значения. При этом в процессе установившейся работы температура двигателя снова установится на уровне 91 %.

Проверим требование ГОСТ183-74 на отечественные электродвигатели, допускающего нахождение ЭД в течение 2 минут в режиме перегрузки 1,5-кратным током:

Как видим, требования ГОСТа выполняются.

Определим температуру двигателя через 25 мин после его отключения:

Поскольку процесс нагрева и охлаждения двигателя происходит по экспоненциальному закону, то для полного остывания двигателя должно пройти время не менее 3Т = 3×1200=3600 с, т.е. не менее 1 часа.

Надо отметить, что в качестве уставок защиты от перегрузки в цифровое реле, например Sepam 2000, вводят значения постоянных времени Тн и Т, а также температуру в процентах, при которой защита должна действовать на сигнал и на отключение, например, 98 % и 110 % соответственно.

При аварийном отключении двигателя защитой от перегрузки его пуск в дальнейшем блокируется до охлаждения двигателя до заданной температуры. Текущее значение температуры двигателя можно вывести на дисплей реле.

Как выше отмечалось, цифровые реле измеряют значения симметричных составляющих токов прямой и обратной последовательностей (Iпр и Iобр). Последняя появляется при несимметрии и неполнофазном режиме. Составляющая обратной последовательности генерирует в роторе двигателя токи значительной амплитуды, которые создают существенное повышение температуры в обмотке ротора и его вибрацию. Поэтому в цифровых реле с превышением величины Iобр значения порога срабатывания (уставки) специальная защита от несимметрии отключает двигатель с выдержкой времени. Кроме того, повышенная интенсивность нагрева двигателя при появлении тока обратной последовательности учитывается в тепловой модели следующим образом.

Вычисляется эквивалентный ток:

, (7.11)

где К − коэффициент усиления влияния тока обратной последовательности на допустимую перегрузку.

При отсутствии необходимых данных значение К принимается равным 4 для отечественных двигателей и около 6 для зарубежных.

Вычисление кратности тока I* в выражении (6.3) производится по величине эквивалентного тока.

Например, определим допустимое время перегрузки двигателя при неполнофазном режиме (обрыв провода на линии 110 кВ). В этом случае, поскольку Iпр = Iобр, значение эквивалентного тока составит

. (7.12)

Подставив в выражение (7.7) значение Iэкв при времени t = 43 c, получим:

.

Следовательно, данный двигатель при неполнофазном режиме отключится защитой от перегрузки за время около 45 с.

Следует отметить, что при тепловых расчетах реальное значение пускового тока двигателя необходимо вычислять по выражению (7.8).

Домашнее задание № 7

Рассчитать для защиты электродвигателя уставки следующих видов защит:

-Защита от междуфазных КЗ;

-Защита от замыкания на землю;

-Защита от перегрузки;

-Защита минимального напряжения.

Рекомендуется придерживаться следующей последовательности расчета. Определяется номинальный ток двигателя:

.

1. В качестве защиты от междуфазных КЗ в обмотке статора применяют токовую отсечку при мощности ЭД меньше 5 МВт или дифференциальную защиту при . Токовую отсечку рекомендуется принимать в двухфазном или трехфазном исполнении (Ксх =1).

Расчетное значение первичного тока срабатывания токовой отсечки определяется по выражению:

,

где Kп – кратность пускового тока;

Kзап – коэффициент запаса, принимается равным 1,8…2 для токового реле РТ-80; 1,5…1,6 для реле РТ-40 и 1,3…1,4 для цифрового реле.

Читать еще:  Влияние дтож на обороты двигателя

Чувствительность защиты оценивается по формуле:

(7.13)

Если чувствительность отсечки недостаточная (меньше 2) или мощность ЭД более 5 МВт, то применяют дифференциальную защиту, при условии, что обмотка этого двигателя имеет выводы со стороны нейтрали.

Ток срабатывания дифференциальной защиты:

, (7.14)

где для дифференциальных реле типа РНТ-565 и ДЗТ-11; для РСТ-15 и принимается для цифрового реле.

Чувствительность защиты оценивается по (7.13).

2. Защита от однофазных замыканий на землю двигателя устанавливается если суммарный емкостной ток замыкания на землю сети (ISC) превышает 5 А. Она выполняется аналогично защите линии, но защита ЭД действует на отключение двигателя. Данная защита выполняется на базе реле тока нулевой последовательности типа РТЗ-51.

Ток срабатывания защиты определяется по выражению (4.6).

Чувствительность защиты определяется по (4.7), где ISC принять из задания № 3. Если чувствительность окажется недостаточной, то рекомендуется применить направленную защиту с реле ЗЗП-1М.

3. Защита от перегрузки выполняется с помощью одного реле максимального тока, контролирующего фазный ток двигателя.

Ток срабатывания защиты ЭД от перегрузки определяется по выражению:

,

где ; .

Выдержка времени срабатывания защиты выбирается по условию отстройки от времени пуска двигателя:

где tпуск в задачи принять 6…12 с

В цифровых реле, кроме выше названных предусмотрена специальная защита от перегрузки ЭД на основе тепловой модели.

4. Защита минимального напряжения (ЗМН) применяется на всех двигателях. При наличии нескольких двигателей защита выполняется групповой.

Напряжение срабатывания реле минимального напряжения (уставка реле напряжения) определяется по формуле:

,

где U2.ном – номинальное напряжение вторичной обмотки измерительного трансформатора напряжения, равное 100 В.

Выдержка времени срабатывания ЗМН двигателей, на которых самозапуск не предусмотрен принимается равной 1.0..3.0 с.

Синхронные двигатели имеют еще защиту от асинхронного хода, которая обычно выполняется в возбудительном устройстве, либо для этой цели используется защита от перегрузки. В последнем случае для исключения отказа при пульсации тока статора эта защита должна иметь выдержку времени не менее 0,6 с при возврате (устанавливается реле РП-250). При использовании цифровых реле защита от асинхронного хода реагирует на максимальное значение реактивной мощности ЭД: .

В заключение выбираются трансформаторы тока и уставки реле защит от междуфазных КЗ и перегрузки. Составляется карта уставок защит электродвигателя в виде таблицы 1.5 домашнего задания №1.

Защита электродвигателя. Виды устройств

Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение. Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.

В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.

Данного отрезка времени, который зависит от время-токовой характеристики автомата защиты, должно хватить, чтобы вал электродвигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные устройства защиты.

Функции и виды устройств защиты электродвигателей

Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

  • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
  • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
  • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;
  • Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
  • Предохранение от некачественного напряжения;
  • Обеспечение выдержки времени для охлаждения электродвигателя после его аварийной остановки после перегрева;
  • Индикация режимов работы и аварийных состояний;
  • Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
  • Совместимость с автоматическими системами контроля и управления.

Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.

Выбор автоматического выключателя

Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор автомата защиты осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.

Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.

Для предотвращения ложного срабатывания автоматического выключателя при запуске электродвигателя необходимо, чтобы кратковременный пусковой ток (Iпуск) не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

Если известна только мощность электродвигателя, то рассчитать номинальный ток можно по формуле In= Рn/(Un*√3*η*cosφ), где Рn – мощность, Un – напряжение, η – КПД, cosφ – коэффициент реактивной мощности двигателя.

Практический расчет защиты электродвигателей

На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In 100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > Inт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать I = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит Inт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).

Читать еще:  Что такое прокрутка двигателя и для чего она нужна

Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

Универсальный блок защиты электродвигателей

На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных устройств защиты, так называемых мотор автоматов, которые выполняют все приведенные выше функции защиты. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.

Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного электродвигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.

Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным возможностям защиты. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.

Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электродвигателя. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.

Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.

Защита электромоторов на производстве

Очень часто, в момент включения мощных потребителей электроэнергии (P>100кВт) на мощных производствах во всей электросети, подключенной к трансформаторной подстанции, напряжение опускается ниже установленного минимума.

При данном кратковременном падении напряжения рабочие электромоторы не отключаются, но теряют обороты. При возобновлении нормального напряжения двигатель снова начинает набирать обороты, то есть работать в режиме запуска (перегрузки). Данное явление называют самозапуском.

Если биметаллическая пластина автоматического выключателя или термореле была достаточно прогрета из-за продолжительной нормальной работы электродвигателя, то в режиме самозапуска тепловой расцепитель может сработать, вызвав ложное срабатывание.

Для мощных электродвигателей на предприятиях для поддержания нормального режима работы, в том числе и после самозапуска, применяют релейную защиту с трансформаторами тока, включенными в цепь питания.

Отклонения от нормы в силовых проводах электродвигателя с подключенными последовательно первичными обмотками токовых трансформаторов используются для срабатывания реле защиты, которые подключатся к вторичным обмоткам токовых трансформаторов по специальным схемам. Сложные расчеты данных мощных систем защиты осуществляются штатными сотрудниками, заведующими энергоснабжением предприятия, поэтому теория производственной электротехники не входит в тему данной статьи.

Поддержка

Защита электродвигателя

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита.

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Тепловой режимЗначение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
BFH
Установившийся (Предельно допустимое среднее значение)120140165
Медленной нагревание (Срабатывание защиты)145170195
Быстрое нагревание (Срабатывание защиты)200225250

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Класс нагревостойкости изоляции двигателяОбозначения типа позистора по ТУ11-85 ОЖО468.165ТУПороговая температура срабатывания позистора, град. С.
ВCТ-14А-2-130130
FCТ-14А-2-145145
HCТ-14А-2-160160

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Читать еще:  Что такое холостой ход двигателя инжекторных

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя

Электронная защита двигателя от перегрузки схема

11-1. Характеристики асинхронных электродвигателей и приводимых механизмов

Как в промышленности, так и в установках собственных нужд электростанций наиболее широко распространены простые и надежные в эксплуатации асинхронные электродвигатели.

Вращающий момент, создаваемый на валу асинхронного электродвигателя, зависит от напряжения на его выводах и от скорости вращения ротора. Зависимость вращающего момента электродвигателя от скорости вращения ротора при постоянных напряжении и частоте сети показана на рис. 11-1 (кривая 1). Если напряжение на зажимах двигателя понизится, что может иметь место, например, при коротком замыкании, вращающий момент на валу уменьшится (кривая 2).

11-2. Повреждения и ненормальные режимы работы электродвигателей. Типы защит

а) Повреждения электродвигателей

В обмотках электродвигателей могут возникать замыкания на землю одной фазы статора, замыкания между витками и многофазные короткие замыкания. Многофазные короткие замыкания и замыкания на землю могут также возникнуть на выводах электродвигателей, в кабелях, муфтах и воронках. Так же как и повреждения других электрических машин и аппаратов, короткие замыкания в электродвигателях сопровождаются прохождением больших токов, разрушающих изоляцию и медь обмоток, сталь ротора и статора.

Для защиты электродвигателя от многофазных коротких замыканий служит токовая отсечка или продольная дифференциальная защита, действующая на отключение.

11-3. Защита от многофазных коротких замыканий

Для защиты от многофазных коротких замыканий электродвигателей мощностью до 5 000 кВт обычно используется максимальная токовая отсечка. Наиболее просто токовая отсечка может быть выполнена с реле прямого действия встроенными в привод выключателя. С реле косвенного действия применяется одна из двух схем соединения трансформаторов тока и реле, приведенных на рис. 11-3 и 11-4. Отсечка выполняется с независимыми токовыми реле. Использование в схеме отсечки токовых реле с зависимой характеристикой (рис. 11-4) позволяет обеспечить с помощью одних и тех же реле одновременно защиту от коротких замыканий и перегрузки.

11-4. Защита от перегрузки

Защита от перегрузки устанавливается только на электродвигателях, подверженных технологическим перегрузкам (мельничных вентиляторов, дымососов, мельниц, дробилок, багерных насосов и т. п.), как правило, с действием на сигнал или разгрузку механизма. Так, например, на электродвигателях шахтных мельниц защита может действовать на отключение электродвигателя механизма, подающего уголь, благодаря чему предотвращается завал мельницы углем.

Защита от перегрузки должна отключать электродвигатель, на котором она установлена, только в том случае, если без остановки электродвигателя нельзя устранить причину, вызвавшую перегрузку. Использование защиты от перегрузки с действием на отключение целесообразно также в установках без обслуживающего персонала.

11-5. Защита минимального напряжения

После отключения короткого замыкания происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время короткого замыкания имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственного расхода. В результате напряжение на шинах собственного расхода, а следовательно, и на электродвигателях понижается настолько, что вращающий момент па валу электродвигателя может оказаться недостаточным для его разворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55—65% UHOM. , Поэтому, для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственного расхода, благодаря чему обеспечивается самозапуск ответственных электродвигателей.

11-6. Расчет тока и остаточного напряжения при самозапуске

Расчет тока, проходящего при самозапуске, выполняется для выбора уставки максимальной токовой защиты трансформатора, питающего электродвигатели по схеме рис. 11-9, а. Остаточное напряжение на выводах электродвигателей рассчитывается для определения возможности самозапуска.

Расчет тока самозапуска при питании электродвигателей через трансформатор производится в следующем порядке:

11-7. Защита электродвигателей 3—10 кВ от замыканий на землю

Защита от замыканий на землю электродвигателей 3—10 кВ, работающих в сети с незаземленной нулевой точкой, выполняется с помощью одного токового реле, которое подключается к трансформатору тока пулевой последовательности типов ТЗ, ТЗЛ, ТЗР и др. (рис. 11-10).

Защита действует так же, как аналогичная защита генераторов. В случае, когда питание электродвигателя осуществляется по двум параллельным кабелям, вторичные обмотки трансформаторов тока, надетых на каждый из них, соединяются последовательно и подключаются к одному токовому реле.

11-8. Защита асинхронных электродвигателей напряжением до 500 В

К защите электродвигателей напряжением до 500 В предъявляются в основном такие же требования, как и к защите электродвигателей более высокого напряжения. Защита электродвигателей от коротких замыканий осуществляется с помощью плавких предохранителей, а также максимальных токовых реле прямого или косвенного действия. На электродвигателях напряжением до 500 В широко применяются аппараты, в которых совмещены устройства защиты и управления электродвигателем — магнитные пуска-. тели и автоматические воздушные выключатели.

Магнитным пускателем называется автоматический контактор, предназначенный для пуска, остановки, защиты от перегрузки и для автоматического отключения электродвигателя при исчезновении напряжения. Магнитный пускатель (рис. 11-11) состоит из электромагнита К, подключаемого к напряжению сети, главных контактов К1 подающих напряжение на электродвигатель и снабженных дугогасительными камерами, тепловых реле Т с размыкающими контактами, осуществляющих защиту электродвигателя от перегрузки, кнопок управления и вспомогательного контакта К2.

11-9. Особенности защиты синхронных двигателей

На промышленных предприятиях широко применяются мощные синхронные электродвигатели, которые так же, как и асинхронные, должны иметь защиту от коротких замыканий, от замыканий на землю, защиту минимального напряжения и защиту от перегрузки. Уставки этих защит выбираются так же, как и па аналогичных защитах асинхронных электродвигателей.

Защиты синхронных электродвигателей должны действовать не только на отключение выключателя, но также и на автомат гашения поля, если он имеется.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector