Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простые схемы для паяния

Простые схемы для паяния

Время на чтение:

Многие люди, которые начинают увлекаться изучением электричества и основам проектирования данного раздела инженерных сетей, часто не имеют возможности получить должный практический опыт. В теории они видят одно, а при чтении электронных схем – совсем другое. Для новичков электронные схемы кажутся сложными не только для применения, но и при попытке их расшифровки. Начинать изучение практической части лучше всего со схем, содержащих простейшую электронную базу и примитивные символические изображения. В приведённом ниже материале будут приведены простые электронные схемы с описанием и их основными обозначениями для начинающих.

Детектор скрытой проводки

Индикатор скрытой проводки – это специальное устройство для обнаружения электросети, проложенной в штробах под штукатуркой стены. Без него не обходится даже простой ремонт домашней электропроводки и розеток. Прибор необходим, когда старая проводка в стенах была проложена без исполнительных схем, и определить место её укладки в отсутствие специального прибора невозможно. При выполнении ремонтных работ целостность изоляции скрытой проводки может быть нарушена сверлом или гвоздем. Подобные действия могут вызвать поражение электрическим током, а также вывести из строя всю домашнюю сеть.

Микросхема детектора для скрытой проводки

Для обнаружения скрытой проводки в большинстве случаев будет достаточно устройства, выполненного из стрелочного или цифрового омметра с полевым транзистором. Корпусом радиоэлемента проводят по участку стены и, если он «видит» проводку, то значения на омметре сразу же меняются. Модифицированный детектор изображен на схеме ниже. Для его изготовления нужны:

  • Батарейка;
  • Светодиод для индикации;
  • Транзистор;
  • Резисторы на 1 Мом, 100 кОм, 330 Ом и 220 Ом;
  • Переключатель для начала в работы.

Детали для детектора

Автоматический регулятор оборотов кулера

Это устройство будет полезным как для простых людей, так и для специалистов по ремонту и обслуживанию ПК. Зачастую производители комплектующих для компьютерной техники подключают питание кулера, охлаждающего процессор или материнскую плату, напрямую. Из-за этого устройство непрерывно вращается на максимальной скорости, несмотря на то, что ПК бездействует. Установив самодельный автоматический регулятор, можно не беспокоиться о температуре процессора, ведь датчик будет включать охлаждение автоматически, когда это действительно необходимо.

Регулятор оборотов не только увеличит срок службы кулера, но и снизит громкость шумов в помещении. Сделать его можно на основе двух транзисторов, резистора и термистора.

Самоделка в виде регулятора кулера

Беспроводной светодиод

Этот примитивный прибор не имеет какой-либо практической ценности, но способен удивить далеких от электроники людей. Он представляет собой светодиод, который начинает светиться, будучи не подключенным к источнику питания.

Схема основана на одном транзисторе, который является практически полноценным генератором тока высокой частоты. Индуктор представлен в виде обычной проволоки, которая согнута в форме кольца. У светодиода имеется приемная петля, получающая на некотором расстоянии от индуктора электрический сигнал и заставляющая лампочку гореть.

Схема беспроводного светодиода

Для схемы понадобятся:

  • 6 пальчиковых батареек;
  • Светодиод;
  • Транзистор (БФ494);
  • Конденсатор на 0.1 мкФ;
  • Резистор на 33 кОм;
  • Индуктор 330 мкГ;
  • Провода.

«Магический» светодиод

Простейший инвертер без транзисторов

Как известно из теоретического курса физики, инвертер преобразует постоянный электрический ток в переменный. Примечательно то, что в большинстве случаев при сборке такого прибора вполне можно обойтись без пайки. Достаточно соединить все контакты простой скруткой. Инвертер, конечно, будет недолговечным, так как реле рано или поздно выйдет из строя, но купить его снова не составит больших проблем. Иногда можно даже найти ненужный переключатель от старого прибора или выпаять его самостоятельно.

Важно! Процесс создания инвертера поможет понять принцип работы постоянного и переменного тока, конвертации одного типа в другой.

Для прибора понадобятся:

  • Трансформатор от радиоприемника, с обмоткой на 220 и 12 Вольт;
  • Реле на 12 Вольт;
  • Провода для соединения деталей;
  • Нагрузка на схему в виде обычной лампочки.

Инвертер простой конструкции без пайки

Автоматический выключатель

Схема аппарата крайне проста, но очень надежна. Принцип работы выключателя основан на работе конденсаторе. Когда происходит нажатие на кнопку, загорается светодиод или лампа. Когда конденсатор будет полностью разряжен, источник света погаснет. Принцип работы следующий: при нажатии кнопки с возвратом происходит зарядка конденсатора, и он превращается в «питательный» элемент. Когда выключатель разомкнет контакт, радиоэлемент будет разряжаться и питать собой цепь, в которой установлена лампа.

Важно! Так как конденсатор не может вечно держать заряд, то свет рано или поздно погаснет. Когда это произойдет – сказать сложно, так как все зависит от характеристик радиоэлементов, используемых в приборе.

Полезно такое устройство будет, например, в погребе или техническом подполье. Человек нажимает кнопку, берет необходимые ему вещи и, чтобы не тянуться к выключателю с грузом в руках, просто выходит из подвала. Когда конденсатор полностью разрядится, лампочка потухнет.

Собранный выключатель

Лабораторный блок питания своими руками

БП – полезный прибор для любого человека, занимающегося электроникой. Устройство способно регулировать выходное напряжение и ограничивать ток до тех параметров, которые будут необходимы для корректной работы той или иной схемы.

Важно! Купить БП можно в любом магазине электроники, но гораздо выгоднее и полезнее будет изготовить его своими руками с использованием простой схемы.

Схема состоит из следующих деталей:

  • Блока питания из трансформатора, диодного моста и конденсатора;
  • Регулятора на транзисторе или стабилитроне;
  • Клемм и радиатора;
  • Светодиода;
  • Вольтметра;
  • Резисторов.

Самодельное устройство в корпусе

Первым делом подготавливается плата, в которую впаиваются все необходимые элементы, фигурирующие в схеме, после чего ее подключают к трансформатору. На этом этапе блок питания уже может функционировать. Можно, конечно, сделать для него корпус, но эта процедура уже не относится к электронике.

Акустический моргалик

Принцип работы акустических приборов всегда связан с улавливанием звуков и голоса человека с помощью микрофона. Попадая на чувствительные элементы динамика, звуковые волны конвертируются в электрический сигнал, который заставляет светодиоды на плате «моргать». Схема состоит из следующих радиоэлементов:

  • Двух транзисторов КТ315Б;
  • Резисторов (3 штуки) на 4700 Ом, 1 МоМб, 10 кОм;
  • Микрофона;
  • Конденсаторов полярного типа (2 штуки) на 47 и 1 мкФ;
  • Светодиодов на 3 Вольта в размере 6 штук.

Функционирует прибор следующим образом: увеличивающий частоту звуковых колебаний усилитель, при попадании на него звуковых волн, начинает менять свое сопротивление. Переменный сигнал проходит через конденсатор и поступает на транзистор, открывая его. Ток достигает коллектора и поступает на второй элемент, который также открывается и лампочки начинают «моргать».

Моргалик на практике

Реле времени для фотопечати

Исходя из названия, реле времени позволяет управлять включением и выключением приборов в автоматическом режиме с помощью временных интервалов. Самый простой вариант можно собрать на транзисторах (из восьми элементов).

Важно! Такие реле активно применяются в системе «умный дом» для автоматизации осветительных приборов.

Состоит устройство из следующих элементов:

  • Резисторы (2 штуки) на 100 Ом и 2.2 мОм;
  • Транзистор биполярного типа КТ937А;
  • Реле для переключения нагрузки;
  • Резистор на 820 Ом;
  • Конденсатор на 3300 мкФ;
  • Диод выпрямительного типа;
  • Переключатель для запуска отсчета времени.

Схема автоматического реле

Работает электросхема на батарейках (9 Вольт) или на аккумуляторах (12 Вольт). Питать реле можно и обычным переменным током из домашней электрической сети. Последний способ возможен лишь при использовании специального преобразователя на постоянный ток с напряжением в 12 Вольт.

Внешний вид реле

В статье были приведены описания и подробно разобраны простые электрические схемы для детей и начинающих радиолюбителей. Они помогут понять основные принципы электроники, базовые обозначения радиоэлементов на схемах и, в конечном итоге, применить свои теоретические знания на практике.

ТОП-5 простых электронных схем для начинающих

Какая схема покажется самой простой для начинающих радиолюбителей? К сожалению, такой схемы нет, и все зависит от личных предпочтений и нужд. Здесь мы покажем электрические схемы для начинающих, которые покажутся интересными, полезными и не потребуют много усилий и сложных деталей: автоматический выключатель, одноканальный усилитель звука на TDA, цветомузыка на диодах, датчик атмосферных осадков и металлоискатель на TDA.

Автоматический выключатель

Выключатель, гасящий свет сам – очень полезная вещь.

Его плюс в том, что в таком варианте схемы его можно ставить не только на источник света, но и любой другой бытовой потребитель электроэнергии, который со временем должен прекратить работу, но выключать который самому лень.

Схема востребована и в подвале с консервами, где не нужно возиться часами, и в личном санузле, который периодически нужно проветрить.

Читать еще:  Электрическая схема включения трехфазного двигателя в однофазную сеть

Принцип действия устройства по данной схеме следующий: при нажатии выключателя SB в цепь включается потребитель электроэнергии HL. По прошествии определенного времени цепь размыкается, источник, соответственно, гаснет.

Для пайки данной электросхемы взят конденсатор в 10 000 мкФ. При нажатии выключателя конденсатор получает заряд от источника питания, к примеру, с 12-вольтового батарейного блока либо аккумулятора.

После этого конденсатор разряжается через цепь R на базу транзистора, с него на эмиттер и на минус.

Поскольку до включения между коллектором и эмиттером транзистора сопротивление было очень большим, то после включения задействовалась цепь с катушкой реле на 12 вольт, которая создала магнитное поле, притянувшее контакты на 220 вольт. Выключатель штатно сработал, включив лампочку/вентилятор/что-то еще.

Единственная разница в том, что через какое-то время лампочка потухнет сама. А как долго схема будет включена, зависит уже от значения конденсатора и резистора. Пока конденсатор разряжается, на базе транзистора напряжение падает вместе с силой проходящего тока.

Когда она пройдет минимальное значение, реле разомкнется, одновременно и размыкая контакты на 220 вольт.

Схема удобна тем, что в ней можно заменять кондер и сопротивление, чтобы играть с временной задержкой. Однако резистор лучше использовать в значении от 100 Ом и до 5 КилоОм.

Иначе транзистору, в нашем случае КТ815Б, может не хватить напряжения. Такое взаимодействие конденсатора и резистора в радиоэлектронике называется RC-цепь.

Самый простой усилитель звука

В настоящий момент большая часть потребительской аудиотехники производится с использованием микросхем, в частности TDA, производимых Phillips.

Сейчас они повсеместно используются в автомобильной аудиотехнике, магнитолах, сабвуферах, системах домашних кинотеатров и других вариантах аудиоусилителей. Их популярность и дешевизна сделали их доступными в любом магазине радиоэлектронных компонентов, самых разных конфигураций и мощности.

Чтобы собрать из них своими руками «усилок», достаточно припаять несколько деталей к ножкам, прикрепить конструкцию к радиатору, поскольку схема очень сильно греется, и сделать выводы на плеер, динамики и сеть. Готово.

Однако при пайке следует соблюсти аккуратность, поскольку ножки усилителя находятся рядом друг с другом, и неопытный радиоэлектрик в спешке может их перепутать или установить не тот резистор, конденсатор, или перепутать их полюса.

Поэтому – осторожность и терпение.

Вариант одноканального усилителя на TDA7396

Характеристики усилителя: при нагрузке в 2 Ом до 45 Ватт. Хватит чтобы устроить дискотеку в комнате, да и с соседями поделиться настроением.

Цветомузыка своими руками

Иногда помимо бодрого ритма хочется, чтобы в такт еще что-то мигало и переливалось. Можно сходить в магазин и купить светоэффекты, что как правило обычные любители музыки и делают. А иногда возникает соблазн собрать самому простые электрические схемы для себя ли, или в подарок папе.

Сперва может показаться, что задача нетривиальна и непроста, и на самом деле тут нужно уметь не только паять, но и печатать платы. Однако с трудом и упорством даже в неопытных руках возможно все. Погнали!

Схема цветомузыки

В данной схеме три транзистора разной мощности, три светодиода – зеленый, синий, красный, и резисторы с конденсаторами.

Красный диод горит при низких частотах в сигнале и имеет соответствующий фильтр, синий для среднего диапазона, и зеленый, когда звук «пищит». С резисторами подстройки R4 — R6 можно настроить чувствительность каждого из трех каналов.

Транзисторы VT1 – VT3 задают коммутацию диодов, и сюда подойдут маломощные n-p-n транзисторы, вроде BC547, BC337, КТ3102. Если одиночных лампочек маловато, то можно впаять в схему куски светодиодной гирлянды, и ставить транзисторы помощнее, например, BD139, 2N4923, КТ961.

А входной сигнал «заливается» с любого аудиоустройства, к примеру со смартфона или ноутбука. Если же схема еле мерцает и света явно не хватает, то стоит спаять однотранзисторный «усилок», например на основе КТ3102.

Но для той же цели подойдет любой маломощный транзистор. Подстроечным резистором R1 получится управлять уровнем сигнала, идущего на цветомузыку. Вольтаж у него 9 – 12 вольт, и он усилит любой слабый сигнал, даже с выхода смартфона.

Дальше идет еще одна сложная для неискушенного радиолюбителя часть – печать платы.

Но научно-технический прогресс и его доступность выручают и здесь. Плату можно изготовить методом лазерно-утюжной технологии, для чего понадобится лазерный принтер, фольгированный текстолит, глянцевая бумага (печатать нужно с глянцевой стороны в зеркальном отображении), мелкая шкурка-нулевка и утюг.

  • печатаем плату на глянце, выставив в настройках плотность и контрастность тонера на максимум,
  • зашкуриваем и обезжирить заготовку платы ацетоном, бензином или специальным обезжиривателем;
  • прикладываем рисунком к плате, не касаясь рабочей поверхности пальцами;
  • проглаживаем заготовку утюгом;
  • смываем водой и щеткой слой бумаги с платы;
  • вытравливаем плату в емкости с раствором хлорного железа или медного купороса на час-полтора (рекомендуется сверху приклеить кусочек пенопласта или другого материала который не разъест купорос, за который потом придется вынимать плату);
  • смываем растворителем остатки тонера с платы;
  • сверлим отверстия под детали и лудим дорожки, плата готова к пайке.

Чтобы подключить питание и звуковывод, лучше использовать клеммы для удобства. Закончив пайку, нужно аккуратно протереть плату, на всякий случай прозвонить.

Перед подачей сигнала с плеера на звуковой вход стоит выставить подстроечные резисторы в «среднее», после чего сигналы пойдут и на цветомузыку, и на колонку.

Для этого подойдет вставляемый в вывод смартфона или плеера разветвитель. После этого регулированием резисторов можно добиться одинаковой яркости свечения резисторов – сначала с помощью R1, потом с R4 — R6.

Датчик дождя

Что может быть неприятнее, чем прийти и увидеть кузов любимого автомобиля в разводах?

Да и владельцам частных домов или постоянно живущим на дачах эта штука может пригодиться.

Увы, устройство по этой схеме нельзя ставить в автомобиль, но это и не нужно – подобные не стоят только на совсем древних автомобилях типа «копейки». Для сборки такого приспособления понадобится:

  • замыкаемый датчик при контакте с водой, который ставится на открытое место;
  • резисторы на 10кОм и 330кОм;
  • транзисторы VT1, VT2, в этой схеме это BC548 и BC 558;
  • блок батареек или иной источник питания на 3 вольта;
  • конденсатор емкостью 100 мкФ;
  • по предпочтению владельца – датчик в виде лампочки или зуммера.

Схема простого металлоискателя

Самые простые электронные схемы базируются на одной микросхеме, в случае этой на TDA0161 – специализированном изделии для датчиков на основе индукции. На основе таких собирают детекторы металла, реагирующие при приближении к индукционному датчику.

Такие в некоторых случаях стоят на заводских проходных.

Детали для его сборки можно найти в магазине радиозапчастей или на алиэкспрессе. В данной схеме металлодетектр издает звук только тогда, когда обнаружит металл. Микросхема работает в диапазоне от 3,5 до 15 вольт, при поиске потребляет ток около 1 мА, в сигнальном режиме 8-12 мА, при рабочей частоте 8-10 кГц.

Запитать устройство можно с помощью телефонного аккумулятора. Также для металлоискателя понадобится «рабочий орган» в виде катушки на 140-150 витков медной проволоки, диаметром 5-7 см. При этом чувствительность прямо зависит от диаметра катушки – чем больше охват, тем чувствительнее.

Аппарат должен работать сразу после сборки, единственное в чем нуждается – в калибровке порога срабатывания переменным резистором.

Самодельный генератор из асинхронного электродвигателя

В стремлении получить автономные источники электроэнергии специалисты нашли способ как своими руками переделать, трехфазный асинхронный электродвигатель переменного тока в генератор. Такой метод имеет ряд преимуществ и отдельные недостатки.

Внешний вид асинхронного электродвигателя

В разрезе показаны основные элементы:

  1. чугунный корпус с радиаторными рёбрами для эффективного охлаждения;
  2. корпус короткозамкнутого ротора с линиями сдвига магнитного поля относительно его оси;
  3. коммутационно контактная группа в коробке (борно), для коммутации обмоток статора в схемы звезда или треугольник и подключения проводов электропитания;
  4. плотные жгуты медных проводов обмотки статора;
  5. стальной вал ротора с канавкой для фиксации шкива клиновидной шпонкой.

Детальная разборка асинхронного электродвигателя с указанием всех деталей показана на рисунке ниже.

Детальная разборка асинхронного двигателя

Достоинства генераторов, переделанных из асинхронных двигателей:

  1. простота сборки схемы, возможность не разбирать электродвигатель, не перематывать обмотки;
  2. возможность вращения генератора электротока ветряной или гидротурбиной;
  3. генератор из асинхронного двигателя широко используется в системах мотор-генератор для преобразования однофазной сети 220В переменного тока в трёхфазную сеть с напряжением 380В.
  4. возможность использования генератора, в полевых условиях раскручивая его от двигателей внутреннего сгорания.
Читать еще:  Что требуется при замене масла в двигателе

Как недостаток можно отметить сложность расчёта ёмкости конденсаторов, подключаемых к обмоткам, фактически это делается экспериментальным путём.

Поэтому трудно добиться максимальной мощности такого генератора, бывают сложности с электропитанием электроустановок, которые имеют большое значение пускового тока, на циркулярных электропилах с трёхфазными двигателями переменного тока, бетономешалках и других электроустановках.

Принцип работы генератора

В основу работы такого генератора заложен принцип обратимости: «любая электроустановка преобразующая электрическую энергию в механическую, может сделать обратный процесс». Используется принцип работы генераторов, вращение ротора вызывает ЭДС и появление электрического тока в обмотках статора.

Исходя из этой теории, очевидно, что асинхронный электродвигатель можно переделать в электрогенератор. Чтобы осознано провести реконструкцию необходимо понять, как происходит процесс генерации и что для этого требуется. Все двигатели, которые приводит в движение сила переменного тока, считаются асинхронными. Поле статора движется с небольшим опережением относительно магнитного поля ротора, подтягивая его за собой в сторону вращения.

Чтобы получить обратный процесс, генерацию, поле ротора должно опережать движение магнитного поля статора, в идеальном случае вращаться в противоположном направлении. Добиваются этого включением в сеть питания, конденсатора большой ёмкости, для увеличения ёмкости используют группы конденсаторов. Конденсаторная установка заряжается, накапливая магнитную энергию (элемент реактивной составляющей переменного тока). Заряд конденсатора по фазе противоположный источнику тока электродвигателя, поэтому вращение ротора начинает замедляться, обмотка статора генерирует ток.

Этот принцип работы используется практически в электровозах, трамваях при необходимости плавного торможения. По такому же принципу некоторые «Кулибины», замедляют вращение диска электросчётчиков, пытаясь сократить расходы на электроэнергию.

Преобразование

Как практически своими руками преобразовать асинхронный электродвигатель в генератор?

Для подключения конденсаторов надо открутить верхнюю крышку борно (коробка), где расположена контактная группа, коммутирующая контакты обмоток статора и подключены провода питания асинхронного двигателя.

Открытое борно с контактной группой

Обмотки статора могут быть соединены в схему «Звезда» или «Треугольник».

Схемы включения «Звезда» и «Треугольник»

На шильдике или в паспорте на изделие показаны возможные схемы подключения и параметры двигателя при различных подключениях. Указывается:

  • максимальные токи;
  • напряжение питания;
  • потребляемая мощность;
  • количество оборотов в минуту;
  • КПД и другие параметры.

Параметры двигателя, которые указаны на шильдике

В трёхфазный генератор из асинхронного электродвигателя, который делают своими руками, конденсаторы подключаются по аналогичной схеме «Треугольником» или «Звездой».

Вариант включения со «Звездой» обеспечивает пусковой процесс генерации тока на более низких оборотах, чем при соединении схемы в «Треугольник». При этом напряжение на выходе генератора будет немного ниже. Подключение по схеме «Треугольника» предоставляет незначительное увеличение выходного напряжения, но требует более высоких оборотов при запуске генератора. В однофазном асинхронном электродвигателе подключается один фазосдвигающий конденсатор.

Схема подключения конденсаторов на генераторе в «Треугольник»

Используются конденсаторы модели КБГ-МН, или другие марки не менее 400 В бесполярные, двухполюсные электролитические модели в этом случае не подходят.

Как выглядит бесполюсный конденсатор марки КБГ-МН

Так как в бытовых условиях рассчитать необходимую ёмкость конденсаторов для используемого двигателя практически невозможно, экспериментальным путём была составлена таблица.

Расчёт ёмкости конденсаторов для используемого двигателя

Номинальная выходная мощность генератора, в кВтПредположительная ёмкость в, мкФ
260
3,5100
5138
7182
10245
15342

В синхронных генераторах возбуждение процесса генерации происходит на обмотках якоря от источника тока. 90% асинхронных двигателей имеют короткозамкнутые роторы, без обмотки, возбуждение создаётся остаточным в роторе статическим зарядом. Его достаточно чтобы на первоначальном этапе вращения создать ЭДС, которое наводит ток, и подзаряжает конденсаторы, через обмотки статора. Дальнейшая подзарядка уже поступает от генерируемого тока, процесс генерации будет непрерывным, пока вращается ротор.

Автомат подключения нагрузки к генератору, розетки и конденсаторы рекомендуется установить в отдельный закрытый щит. Соединительные провода от борно генератора до щита проложить в отдельном изолированном кабеле.

Даже при неработающем генераторе необходимо избегать прикосновения к клемам конденсаторов контактов розеток. Накопленный конденсатором заряд остаётся длительное время и может ударить током. Заземляйте корпуса всех агрегатов, мотора, генератора, щита управления.

Монтаж системы мотор-генератор

При монтаже генератора с мотором своими руками надо учитывать, что указанное количество номинальных оборотов используемого асинхронного электродвигателя на холостом ходу больше.

Схема мотор-генератора на ременной передаче

На двигателе в 900 об/м при холостом ходе будет 1230 об/м, чтобы получить на выходе генератора, переделанного из этого двигателя достаточную мощность, надо иметь количество оборотов на 10% больше холостого хода:

1230 + 10% =1353 об/м.

Ременная передача рассчитывается по формуле:

Vг – необходимая скорость вращения генератора 1353 об/м;

Vм – скорость вращения мотора 1200 об/м;

Dм – диаметр шкива на моторе 15 см;

Dг – диаметр шкива на генераторе.

Имея мотор на 1200 об/м где шкив Ø 15 см, остаётся рассчитать только Dг – диаметр шкива на генераторе.

Dг = Vм x Dм/ Vг = 1200об/м х 15см/1353об/м = 13,3 см.

Генератор на ниодимовых магнитах

Как сделать генератор из асинхронного электродвигателя?

Этот самодельный генератор исключает применение конденсаторных установок. Источник магнитного поля, которое наводит ЭДС и создаёт ток в обмотке статора, построен на постоянных ниодимовых магнитах. Для того чтобы это сделать своими руками необходимо последовательно выполнить следующие действия:

  • Снять переднюю и заднюю крышки асинхронного электродвигателя.
  • Извлечь ротор из статора.

Как выглядит ротор асинхронного двигателя

  • Ротор протачивается, снимается верхний слой на 2 мм больше толщины магнитов. В бытовых условиях сделать расточку ротора своими руками не всегда представляется возможным, при отсутствии токарного оборудования и навыков. Нужно обратиться к специалистам в токарные мастерские.
  • На листе обычной бумаги готовится шаблон для размещения круглых магнитов, Ø 10-20мм, толщиной до 10 мм, с силой притяжения 5-9 кг, на кв/см, размер зависит от величины ротора. Шаблон наклеивается на поверхность ротора, магниты размещаются полосами под углом 15 – 20 градусов относительно оси ротора, по 8 штук в полосе. На рисунке ниже видно, что на некоторых роторах отмечены тёмно-светлые полосы смещения линий магнитного поля относительно его оси.

Установка магнитов на ротор

  • Ротор на магнитах рассчитывается так, чтобы получилось четыре группы полос, в группе по 5 полосок, расстояние между группами 2Ø магнита. Промежутки в группе 0.5-1Ø магнита, такое расположение снижает силу залипания ротора к статору, он должен проворачиваться усилиями двух пальцев;
  • Ротор на магнитах, сделанный по рассчитанному шаблону, заливается эпоксидной смолой. После того как она немного подсохнет цилиндрическая часть ротора покрывается слоем стекловолокна и опять пропитывается эпоксидной смолой. Это исключит вылет магнитов при вращении ротора. Верхний слой на магнитах не должен превышать первоначального диаметра ротора, который был до проточки. В противном случае ротор не встанет на своё место или при вращении будет тереться об обмотку статора.
  • После просушки, ротор можно поставить на место и закрыть крышки;
  • Испытывать, электрогенератор необходимо – проворачивать ротор электродрелью, измеряя напряжение на выходе. Количество оборотов при достижении нужного напряжения измеряется тахометром.
  • Зная необходимое количество оборотов генератора, ременная передача рассчитывается по методике описанной выше.

Интересный вариант применения, когда электрогенератор на основе асинхронного электродвигателя, используется в схеме электрический мотор-генератор с самоподпиткой. Когда часть мощности вырабатываемой генератором поступает на электродвигатель, который его раскручивает. Остальная энергия расходуется на полезную нагрузку. Осуществив принцип самоподпитки практически можно на долгое время обеспечить дом автономным электропитанием.

Видео. Г енератор из асинхронного двигателя.

Для широкого круга потребителей электроэнергии покупать мощные дизельные электростанции как TEKSAN TJ 303 DW5C с мощностью на выходе 303 кВА или 242 кВт не имеет смысла. Маломощные бензиновые генераторы дорогие, оптимальный вариант сделать своими руками ветровые генераторы или устройство мотор-генератор с самопдпиткой.

Используя эту информацию можно собрать генератор своими руками, на постоянных магнитах или конденсаторах. Такое оборудование очень полезно на загородных домах, в полевых условиях, как аварийный источник питания, когда отсутствует напряжение в промышленных сетях. Полноценный дом с кондиционерами, электрическими плитами и нагревательными бойлерами, мощный мотор циркулярной пилы они не потянут. Временно обеспечить электроэнергией бытовые приборы первой необходимости могут, освещение, холодильник, телевизор и другие, которые не требуют больших мощностей.

Как сделать электродвигатель своими руками

Рассмотрим отдельные аспекты конструирования. Не станем обещать изготовление вечного двигателя, по типу творения, приписываемого Тесле, но рассказ предвидится интересным. Не станем тревожить читателей скрепками и батарейками, предлагаем поговорить, как приспособить уже готовый мотор под собственные цели. Известно, что конструкций масса, все используются, но современная литература базовые основы оставляет за кормой. Авторы проштудировали учебник прошлого века, изучая, как сделать электродвигатель собственноручно. Теперь предлагаем окунуться в знания, составляющие базис специалиста.

Почему в быту часто применяются коллекторные двигатели

Коллекторный тип двигателя

Если брать фазу на 220В, принцип работы электродвигателя на коллекторе позволяет изготовить устройства в 2-3 раза менее массивные, нежели при использовании асинхронной конструкции. Это важно при изготовлении приборов: ручные блендеры, миксеры, мясорубки. Помимо прочего, асинхронный двигатель сложно разогнать выше 3000 оборотов в минуту, для коллекторных указанное ограничение отсутствует. Что делает устройства единственно пригодными для реализации конструкций центрифужных соковыжималок, не говоря уже о пылесосах, где скорость часто не ниже.

Отпадает вопрос, как сделать регулятор оборотов электродвигателя. Задача давно решена путём отсечки части цикла синусоиды питающего напряжения. Это возможно, ведь коллекторному двигателю нет разницы, питаться переменным или постоянным током. В первом случае падают характеристики, но с явлением мирятся по причине очевидных выгод. Работает электродвигатель коллекторного типа и в стиральной машине, и в посудомоечной. Хотя скорости сильно отличаются.

Легко сделать и реверс. Для этого меняется полярность напряжения на одной обмотке (если затронуть обе, направление вращения останется прежним). Иная задача – как сделать двигатель с подобным количеством составных частей. Сделать самостоятельно коллектор вряд ли удастся, но намотать заново и подобрать статор вполне реально. Заметим, что от числа секций ротора зависит скорость вращения (аналогично амплитуде питающего напряжения). А на статоре лишь пара полюсов.

Наконец, при использовании указанной конструкции удаётся создать устройство универсальное. Работает двигатель без труда и от переменного, и от постоянного тока. Просто на обмотке делают отвод, при включении от выпрямленного напряжения задействуют полностью витки, а при синусоидальном исключительно часть. Это позволяет сохранить номинальные параметры. Сделать примитивный электродвигатель коллекторного типа не выглядит простой задачей, зато удастся целиком приспособить параметры под собственные нужды.

Особенности работы коллекторных двигателей

В коллекторном двигателе не слишком полюсов на статоре. Если говорить точнее, всего два — северный и южный. Магнитное поле в противовес асинхронным двигателям здесь не вращается. Вместо этого меняется положение полюсов на роторе. Подобное положение дел обеспечивается тем, что щётки постепенно движутся по секциям медного барабана. Особой намоткой катушек обеспечивается должное распределение. Полюса словно скользят по кругу ротора, толкая его в нужном направлении.

Для обеспечения режима реверса достаточно поменять полярность питания любой обмотки. Ротор в этом случае называется якорем, а статор – возбудителем. Включать эти цепи допустимо параллельно друг другу либо последовательно. И тогда начнут значительно изменяться характеристики прибора. Это описывается механическими характеристиками, взгляните на прилагающийся рисунок, чтобы представить утверждаемое. Здесь условно показаны графики для двух случаев:

График изменения характеристик прибора

  1. При параллельном питании возбудителя (статора) и якоря (ротора) коллекторного двигателя постоянным током его механическая характеристика почти горизонтальна. Это значит, что при изменении нагрузки на вал сохраняется номинальная частота вращения вала. Это применяется на обрабатывающих станках, где изменение оборотов не лучшим образом сказывается на качестве. В результате деталь вращается при касании её резцом резво, как при старте. Если препятствующий момент слишком возрастает, происходит срыв движения. Двигатель останавливается. Резюме: если хотите двигатель от пылесоса применить для создания металлообрабатывающего (токарного) станка, предлагается обмотки соединить параллельно, ведь в бытовой технике доминирует иной тип включения. Причём ситуация объяснима. При параллельном питании обмоток переменным током образуется слишком большое индуктивное сопротивление. Указанную методику следует применять с осторожностью.
  2. При последовательном питании ротора и статора у коллекторного двигателя появляется прелестное свойство – большой крутящий момент на старте. Такое качество активно используется для страгивания трамваев, троллейбусов и, вероятно, электропоездов. Главное, что при увеличении нагрузки обороты не срываются. Если запустить в таком режиме коллекторный двигатель на холостом ходу, скорость вращения вала будет расти безмерно. Если мощность мала – десятки Вт – беспокоиться не стоит: сила трения подшипников и щёток, возрастание токов индукции и явление перемагничивания сердечника вкупе затормозят рост на конкретном значении. В случае промышленных агрегатов либо упомянутого пылесоса, когда его двигатель извлекли из корпуса, повышение скорости идёт лавинообразно. Центробежная сила оказывается столь велика, что нагрузки способны разорвать якорь. Поосторожнее при запуске коллекторных двигателей с последовательным возбуждением.

Коллекторные двигатели с параллельным включением обмоток статора и ротора отлично поддаются регулировке. За счёт внедрения реостата в цепь возбудителя удаётся значительно поднять обороты. А если такой присоединить в ветвь якоря, вращения, напротив, замедлится. Это массово используется в технике для достижения нужных характеристик.

Конструкция коллекторного двигателя и связь её с потерями

При конструировании коллекторных двигателей принимаются во внимание сведения, касающиеся потерь. Выделяются трёх видов:

    Электрическими принято называть тепловые потери при движении токов по проводникам. Для снижения указанной величины обмотки выполняются из меди, имеющей наименьшее удельное сопротивление из доступных материалов. Понятно, что лучше взять серебро, а золото – просто отлично, но это слишком дорого. Тепловые потери зависят от сечения. Нельзя выбирать толщину проводников слишком малой. С этой точки зрения она ограничивается рассеиваемой мощностью, не меньше реально присутствующей в двигателе. Иначе обмотка сгорит. Слишком толстые проводники из меди, впрочем, сделают двигатель громоздким и тяжёлым, плюс – дорогим. Важное дополнение: двигатели обязаны сопровождаться средствами защиты. Уместны термопредохранители или реле, находятся в свободной продаже. А значения срабатывания выбираются ниже температуры выгорания обмотки (изоляции). Обычно 135 градусов Цельсия. Технические данные на предельные температуры проводов приводятся в характеристиках (data sheet).

Обычно при питании коллекторного двигателя переменным током используется последовательное включение обмоток. В противном случае выходит слишком большое индуктивное сопротивление.

К сказанному добавим, что при питании коллекторного двигателя переменным током вступает в роль индуктивное сопротивление обмоток. Поэтому при одинаковом действующем напряжении частота оборотов понизится. Полюса статора и корпус уберегаются от магнитных потерь. В необходимости этого легко убедиться на простом опыте: питайте маломощный коллекторный двигатель от батарейки. Его корпус останется холодным. Но если теперь подать переменный ток с прежним действующим значением (по показаниям тестера), картина изменится. Теперь корпус коллекторного двигателя начнёт греться.

Эскиз сбора статора в поперечном срезе и сбоку

Потому даже кожух стараются собрать из листов электротехнической стали, клепая либо склеивая при помощи БФ-2 и аналогов. Наконец, дополним сказанное утверждением: листы набираются по поперечному срезу. Часто статор собирается по эскизу, показанному на рисунке. В этом случае катушка наматывается отдельно по шаблону, потом изолируется и надевается обратно, упрощая сборку. Что касается методик, проще нарезать сталь на плазменном станке, и не думать о цене мероприятия.

Проще найти (на свалке, в гараже) уже готовую форму для сборки. Потом уже намотать под неё катушки из медной проволоки с лаковой изоляцией. Заведомо диаметр подбирается больше. Вначале готовую катушку натягивают на первый выступ сердечника, потом на второй. Прижимают проволоку так, что по торцам остаётся небольшой воздушный зазор. Считается, подобное не критично. Чтобы держалось, у двух крайних пластин острые углы срезаются, оставшаяся серёдка отгибается наружу, отжимая торцы катушки. Это поможет собрать двигатель по заводским меркам.

Часто (особенно в блендерах) находится разомкнутый сердечник статора. Это не искажает форму магнитного поля. Раз полюс единственный, особой мощности ожидать не приходится. Форма сердечника напоминает букву П, между ножками литеры в магнитном поле вертится ротор. Под устройство сделаны кругообразные прорези в нужных местах. Подобный статор нетрудно собрать самостоятельно из старого трансформатора. Это проще, нежели сделать электродвигатель с нуля.

Сердечник в месте намотки изолируется стальной гильзой, по бокам – диэлектрическим фланцами, вырезанными из любого подходящего пластика.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector