Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как регулировать обороты двигателя переменного тока

Как регулировать обороты двигателя переменного тока

Cпособы регулирования скорости вращения асинхронного двигателя

Асинхронные двигатели переменного тока являются самыми применяемыми электродвигателями абсолютно во всех хозяйственных сферах. В их преимуществах отмечается конструктивная простота и небольшая цена. При этом немаловажное значение имеет регулирование скорости асинхронного двигателя. Существующие способы показаны ниже.

Согласно структурной схеме скоростью электродвигателя можно управлять в двух направлениях, то есть изменением величин:

  1. скорость электромагнитного поля статора;
  2. скольжение двигателя.

Первый вариант коррекции, используемый для моделей с короткозамкнутым ротором, осуществляется за счет изменения:

  • частоты,
  • количества полюсных пар,
  • напряжения.

В основе второго варианта, применяемого для модификации с фазным ротором, лежат:

  • изменение напряжения питания;
  • присоединение элемента сопротивления в цепь ротора;
  • использование вентильного каскада;
  • применение двойного питания.

Вследствие развития силовой преобразовательной техники на текущий момент в широком масштабе изготовляются всевозможные виды частотников, что определило активное применение частотно-регулируемого привода. Рассмотрим наиболее распространённые методы.

Частота вращения

Частоту оборотов АДКР (N) вычисляют по формуле: 60F (частота напряжения в сети)/p (число полюсных пар статора, измеряется в об/мин).

Обычно тех. характеристики указаны на корпусе двигателя. Если такой информации по какой-то причине нет, то число оборотов вычисляют по другим признакам:

  • количеству катушек;
  • учитывается диаметральный шаг отмотки;
  • количеству полюсов по сердечнику статора.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Частотное регулирование

Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

Однофазные же двигатели управляются:

  • специальными однофазными преобразователями частоты;
  • 3-фазными преобразователями частоты с устранением конденсатора.

Схемы регуляторов оборотов асинхронного двигателя

Для двигателей повседневного предназначения легко можно выполнить необходимые расчеты, и своими руками произвести сборку устройства на полупроводниковой микросхеме. Пример схемы регулятора электродвигателя приведён ниже. Такая схема позволяет добиться контроля параметров приводной системы, затрат на техническое обслуживание, снижения потребления электричества наполовину.

Принципиальная схема регулятора оборотов вращения ЭД для повседневных нужд значительно упрощается, если применить так называемый симистор.

Обороты вращения ЭД регулируются с помощью потенциометра, определяющего фазу входного импульсного сигнала, открывающего симистор. На изображении видно, что в качестве ключей применяются два тиристора, подключённых встречно-параллельно. Тиристорный регулятор оборотов ЭД 220 В достаточно часто применяется для регулирования такой нагрузки, как диммеры, вентиляторы и нагревательная техника. От оборотов вращения асинхронного ЭД зависят технические показатели и эффективность работы двигательного оборудования.

Подключение

Способ подключения регулятора оборотов электродвигателя будет отличаться в зависимости от его типа и принципа действия. Поэтому в качестве примера мы разберем один из наиболее распространенных частотных регуляторов, которые используются в самых различных сферах.

Перед подключением обязательно ознакомьтесь с заводской схемой. Как правило, вы можете увидеть ее на самом регуляторе оборотов, либо в паспорте устройства:


Схема подключения регулятора

Далее, пользуясь распиновкой, можно определить количество выводов, которые будут использоваться для подключения регулятора электродвигателя к сети. В нашем примере, рассмотрим случай, когда применяется трехпроводная система, значит, понадобится фаза, ноль и земля. На задней панели регулятора это два вывода AC и FG:


Распиновка регулятора

Затем необходимо проверить цветовую маркировку разъема с приведенной схемой и сопоставить ее со всеми элементами электродвигателя, которые будут подключаться в вашем случае. Если какие-то выводы окажутся лишними, их можно закоротить, как показано на рисунке выше.


Проверьте цветовую маркировку

Если все выводы регулятора соответствуют клеммам электродвигателя, можете подсоединять их друг к другу и к сети.

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

В цепи якоря

Это лучший вариант регулирования скорости мотора с независимым возбуждением. Частота вращения прямо пропорциональна подводимому к якорю напряжению. Механические характеристики не меняют своего угла наклона, а перемещаются параллельно друг другу.

Для осуществления этой схемы нужно цепь якоря подключить к источнику напряжения, которое можно менять.

Это возможно в электрических машинах малой или средней мощности. Двигатель большой мощности целесообразно подключить в схему с генератором напряжения независимого возбуждения.

В качестве привода для генератора используют обычный трехфазный асинхронник. Чтобы уменьшить обороты, достаточно на якоре понизить напряжение. Оно меняется от номинального и вниз. Эта схема имеет название «двигатель-генератор». Таким образом можно менять параметры на двигателе 220в.

Для низкого напряжения

Управление агрегатами на 12в проще из-за более низкого напряжения и как следствие, более доступных деталей. Вариантов подобных схем множество, поэтому важно понять сам принцип.

Такой двигатель имеет ротор, щеточный механизм и магниты. На выходе у него всего два провода, контролирование скорости идет по ним. Питание может быть 12, 24, 36в, или другое. Что нужно – это его менять. Лучше, когда в пределах от нуля до максимума. В более простых вариантах 12–0в не получится, другие варианты дают такую возможность.

Читать еще:  Электрическая схема подключения двигателя водяного насоса

Кто-то паяет радиоэлементы навесным монтажом, кто-то набирает печатную плату – это уже зависит от желания и возможностей каждого человека.

Этот вариант подойдет, если точность неважна: например, вентилятор. Напряжение меняется от 0 до 12 вольт, пропорционально меняется крутящий момент.

Другой вариант – со стабилизацией оборотов независимо от нагрузки на валу.

Питание 12 вольт, схема очень проста. Двигатель набирает обороты плавно, и также плавно их сбавляет так как напряжение на выходе меняется в пределах 12–0в. Как результат – можно убрать крутящий момент практически до нуля. Если потенциометр крутить в обратном направлении, мотор так же постепенно набирает обороты до максимума. Микросхема очень распространенная, ее характеристики тоже подробно описаны. Питание 12–18в.

Есть еще один вариант, только это уже не для 12, а для 24в питания.

Двигатель постоянного тока, питание – переменное, так как стоит диодный мост. При желании можно мост выбросить и запитывать постоянкой от своего блока питания.

Простой регулятор мощности на 220 Вольт из 5 деталей.

Это схема прекрасно работает с такими приборами, как болгарки, дрели, простые лампочки, пылесосы, нагревательные плиты, тены, коллекторные двигатели, первичные обмотки трансформаторов и так далее…

Я лично для себя собирал данное устройство, чтобы регулировать питание первичной обмотки зарядного устройства для автомобильного аккумулятора, тем самым получая нужные мне параметры на выходе.

Итак, для этого нам потребуется симистор, у меня он был уже прикрученный к радиатору. Симистор у меня был BТА41-600, можно взять и другой, под свои нужды.

  • Резистор 560 ом
  • Динистор, вытащил с энергосберегающей лампы.
  • Конденсатор 0.1 мкф 400 вольт
  • Переменный резистор на 470 кОм, можно взять поменьше.

Вот схема данного устройства, она довольно маленькая

Регулятор скорости коллекторного двигателя

Заказать

Вы можете приобрести готовое устройство (без шунта, и переменного резистора) . Для заказа нажмите на кнопку или направьте заказ на почту sales@digect.ru.

Регулятор скорости коллекторного двигателя с компенсацией нагрузки и защитой от перегрузки предназначен для изменения скорости вращения двигателя. При включении обеспечивая плавный старт при этом скорость вращения двигателя стабилизируется в независимости от нагрузки на валу двигателя (константная электроника).

Регулятор выполнен на ИМС U2010B и подойдет для большинства электроинструмента (болгарки, торцовки, фрезеры и т.п), оснащенного коллекторным двигателем (двигатель со «щетками») мощностью не более 2200 Вт.

Особенности

Update: Для нормальной работы функции плавного старта, выключатель должен находится в цепи 220В.

  1. Плавный старт. При подаче питания двигатель запускается плавно и без рывка, что сбережет редуктор, предохранит двигатель от преждевременного износа.
  2. Защита от перегрузки. При чрезмерной нагрузке на валу двигателя светодиод на регуляторе загорится указывая на то, что устройство перегружено, с еще большим увеличением нагрузки (вплоть до заклинивания) — регулятор остановит двигатель, восстановление работоспособности двигателя будет осуществлено согласно установленному режиму работы (см режимы работы).
  3. Функция регулирования оборотов двигателя. Возможность изменять обороты двигателя от нуля до максимума.
  4. Функция стабилизации оборотов двигателя. В середине диапазона оборотов регулятор будет пытаться стабилизировать обороты двигателя вне зависимости от нагрузки на валу двигателя.

Устройство, находится под высоким напряжением и не имеет гальванической развязки от питающей сети. Поэтому при работе с ним нужно соблюдать предельную осторожность. ВСЕ МАНИПУЛЯЦИИ с регулятором можно проводить ТОЛЬКО ПОСЛЕ ВЫКЛЮЧЕНИЯ ПИТАНИЯ И ПОЛНОГО ОТКЛЮЧЕНИЯ ИХ ОТ СЕТИ В регуляторе отсутствует предохранитель, поэтому необходимо предусмотреть его установку. Эксплуатация устройства без предохранителя не допускается так как в случае короткого замыкания это может привести к пожару и другим негативным последствиям.

Регулятор оборотов может работать в трех режимах, которые определяются положением перемычки X1.

Режимы работы.

  1. Индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
  2. Индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт. Данный режим устанавливается при отсутствии перемычки, и является режимом по умолчанию.
  3. Только индикация перегрузки, без остановки двигателя и защиты.

Внешний вид и расположение элементов.

  1. Напряжение питания ≈220 В.
  2. Нагрузка, коллекторный двигатель. Максимальная нагрузка 2.2 кВт
  3. Светодиод индикации перегрузки. (в версии 2021 года,установлен SMD светодиод — посмотреть)
  4. Регулировка компенсации нагрузки.
  5. Регулировка перегрузки.
  6. Переменный резистор регулировки оборотов двигателя.
  7. Регулировка пределов регулировки скорости.
  8. Перемычка для установки режима работы устройства.
  9. Шунт R6, измерителя тока.

`

В версии 2021 года установлен smd светодиод, при этом отверстия для монтажа обычного светодиода оставлены, если вы хотите установить выводной светодиод (иногда это необходимо, если вы хотите удалить индикацию от платы при установке его в корпус), удалите штатный smd светодиод и впаяйте необходимый вам.

Обращаю ваше внимание на то, что включая устройство с неподключенным шунтом вы можете вывести из строя ИМС U2010B! Не подавайте питание на регулятор пока не смонтируете на нем шунт и переменный резистор.

Регулировка изделия.

Установите переменный резистор в положение соответствующем минимальным оборотам , подстроечный резистор R10 (компенсация нагрузки) установить в среднее положение , включаем устройство к сети 220В. Резистором R8 (amax) выставить минимальные обороты, Минимальные обороты должны быть таковы чтобы при включении питания двигатель начинал устойчиво вращаться. Далее необходимо настроить компенсацию нагрузки. Необходимо отметить что компенсация нагрузки, работает не во всем диапазоне оборотов двигателя, например на максимальных оборотах невозможно регулировать нагрузку так как на двигатель всегда подается максимальное напряжение. Установите обороты двигателя в среднее положение, при этом увеличивая нагрузку на валу любым доступным способом, например зажимая вал двигателя тряпкой, добейтесь поворотом резистора R10 такого состояния чтобы обороты двигателя были стабильными в независимости от нагрузки. В последнюю очередь настройте защиту от перегрузки. Выставьте обороты двигателя близко к минимальным и попробуйте затормозить двигатель выставив резистором R11 такое положение при котором при повышенной нагрузке загорался светодиод VD2, а при чрезмерном либо при заклинивании двигатель обесточивался.

На симистор VS1 для охлаждения возможно придется установить радиатор, а при мощности устройства более 1 кВт его установить просто необходимо чтобы избежать выход из строя устройства в результате перегрева.

Устройство может работать некорректно, если на двигателе установлена «конкурирующая» электроника, как пример в дисковой пиле Интерскол ДП-190 (посмотреть), установлен «плавный старт» и если его не убрать, то пила будет дергатся, обороты плавать, убедитесь что у вас нет ничего подобного!

Управление двигателями постоянного тока. Часть 1

Владимир Рентюк, Запорожье, Украина

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель – электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра – это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

Читать еще:  417 двигатель сколько в нем лошадей

К двигателям постоянного тока относятся два типа – это привычные для нас коллекторные двигатели и бесколлекторные (шаговые) двигатели. В первых переменное магнитное поле, обеспечивающее вращение вала двигателя, образуется обмотками ротора, которые запитываются через щеточный коммутатор – коллектор. Оно и взаимодействует с постоянным магнитным полем статора, вращая ротор. Для работы таких двигателей внешние коммутаторы не требуются, их роль выполняет коллектор. Статор может быть изготовлен как из системы постоянных магнитов, так и из электромагнитов. Во втором типе электродвигателей обмотки образуют неподвижную часть двигателя (статор), а ротор сделан из постоянных магнитов. Здесь переменное магнитное поле образуется путем коммутации обмоток статора, которая выполняется внешней управляющей схемой. Шаговые двигатели («stepper motor» в английском написании) значительно дороже коллекторных. Это достаточно сложные устройства со своими специфическими особенностями. Их полное описание требует отдельной публикации и выходит за рамки данной статьи. Для получения более полной информации по двигателям этого типа и их схемам управления можно обратиться, например, к [1].

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три – это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, LM317 [2]. Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как RLIM. Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором – минимальную. Что выбрать – зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию [2]; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением VIN и выходным VOUT, равной 3 В, будет рассеиваться мощность не менее

Таким образом, нужен радиатор. Опять вопрос – на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Рисунок 3.График зависимости мощности, рассеиваемой на ИМС регулятора, от выходного напряжения.

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

Выход из положения – использовать для управления метод широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. Его суть – подача на двигатель промодулированных по длительности однополярных прямоугольных импульсов. Согласно теории сигналов, в структуре такой последовательности имеется постоянная составляющая, пропорциональная отношению τ/T, где: τ – длительность импульса, а T – период последовательности. Вот она-то и управляет скоростью двигателя, который выделяет ее как интегратор в этой системе. Поскольку выходной каскад регулятора на основе ШИМ работает в ключевом режиме он, как правило, не нуждается в больших радиаторах для отвода тепла, даже при относительно больших мощностях двигателя, и КПД такого регулятора несравненно выше предыдущего. В ряде случаев можно использовать понижающие или повышающие DC/DC-преобразователи, но они имеют ряд ограничений, например, по глубине регулировки выходного напряжения и минимальной нагрузке. Поэтому, как правило, чаще встречаются иные решения. «Классическое» схемное решение такого регулятора представлено на Рисунке 4 [3]. Оно использовано в качестве дросселя (регулятора) в профессиональной модели железной дороги.

Рисунок 4.«Классическая» схема управления коллекторным двигателем на основе ШИМ (согласно оригиналу [3]).

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Рисунок 5.Диаграмма управления коллекторным двигателем на основе ШИМ. Верхняя трасса – напряжение на конденсаторе С1; средняя (пересекает верхнюю) – сигнал управления (напряжение на движке резистора RV2); нижняя – напряжение на двигателе.

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа BUZ11 [4]. Особенности этого транзистора типа MOSFET – большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Читать еще:  В глушителе бензин и троит двигатель

Еще одна проблема таких регуляторов – это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Если использовать биполярный транзистор, то возникает проблема формирования достаточного по величине базового тока. Как известно, для насыщения ключа на биполярном транзисторе ток его базы должен быть, по крайней мере, не менее 0.06 от тока нагрузки. Понятно, что операционный усилитель такой ток может не обеспечить. С этой целью в аналогичном, по сути, регуляторе, который используется, например, в популярном мини-гравере PT-5201 компании Pro’sKit, применен транзистор TIP125, представляющий собой схему Дарлингтона. Тут интересный момент. Эти мини-граверы иногда выходят из строя, но не из-за перегрева транзистора, как можно было бы предположить, а из-за перегрева ИМС LM358 (максимальная рабочая температура +70 °С) выходным транзистором (максимально допустимая температура +150 °С). В изделиях, которыми пользовался автор статьи, он был вплотную прижат к корпусу ИМС и посажен на клей, что недопустимо нагревало ИМС и почти блокировало теплоотвод. Если вам попалась такое исполнение, то лучше «отклеить» транзистор от ИМС и максимально отогнуть. За это know-how автор статьи был премирован компанией Pro’sKit набором инструментов. Как видите все нужно решать в комплексе – смотреть не только на схемотехнику, но и внимательно относится к конструкции регулятора в целом.

Есть еще несколько интересных схем более простых ШИМ-регуляторов. Например, две схемы на одиночном операционном усилителе с драйвером опубликованы в [5] (Одна из них приведена на Рисунке 6а). Есть схемы и на базе популярного таймера серии 555 [6] (Рисунок 6б). Эти дешевые решения не должны вводить вас в заблуждение своей кажущейся простотой. Вспомним А.С. Пушкина: «Не гонялся бы ты, поп, за дешевизной». Или французов: «За каждое удовольствие нужно платить». Обе эти схемы формируют суррогатный сигнал ШИМ с изменением опорной частоты. Так схемы на ОУ из [5] меняют частоту управления во время регулирования от 170 Гц до 500 Гц, а схема на таймере – от 150 Гц до 1000 Гц, и ее диапазон регулировки (верхний диапазон) ограничен скважностью 9.5. Для некоторых применений это может быть недопустимо, так как на больших частотах двигатель может и не заработать, или не дать нужный момент вращения. Это происходит из-за того, что ток в обмотке двигателя, которая представляет собой индуктивность, устанавливается не мгновенно, а нарастает и спадает по экспоненте. Более корректные схемы на базе таймера и одиночного ОУ приведены на Рисунке 7.

Аналогичные по структуре регуляторы можно построить и на цифровых логических элементах, но они имеют малую нагрузочную способность и требуют отдельного источника питания, поэтому в данной статье не рассматриваются. Применение же таймера 555 интересно тем, что частота генератора, выполненного на его базе, практически не зависит от напряжения питания. Кроме того, большинство ныне выпускаемых зарубежных аналогов, выполненных по биполярной технологии, допускает выходной ток до 200 мА и более. То есть, они могут легко справиться и с емкостью затвора MOSFET и с мощными ключами на биполярных транзисторах. Близкий к таймеру 555 советско-российский аналог – это ИМС (КР)1006ВИ1. Максимальный выходной ток для КР1006ВИ1 и КМОП-версий таймера составляет 100 мА.

Электронный регулятор частоты вращения двигателя (актуатор)

  • Главная
  • Каталог
    • Дизельные электростанции ДЭС (АД) ДГУ мощностью 12-440 кВт
    • Дизельные электростанции ДЭС (АД) ДГУ в контейнере и под капотом
    • Двигатели ЯМЗ, ТМЗ, ММЗ, применяемые в ДЭС (АД) ДГУ мощностью 12-440 кВт
    • Автоматизация дизельных электростанций
    • Генераторы синхронные модели Marelli Motori, Linz Electric, Stamford, Leroy Somer, БГ
    • Кунги кузов фургоны на шасси для установки ДЭС (АД) ДГУ мощностью 12-440 кВт
  • Электростанции
    • Дизельные электроагрегаты АД
    • Дизельные электростанции ДЭС
    • Дизельные генераторы ДГУ
  • Газопоршневые
  • Фото
  • Ремонт
    • Сервисное обслуживание
    • Ремонт генераторов
  • Лизинг
  • Пусконаладка
  • Доставка
  • Цены
  • Контакты

Электронный регулятор оборотов GAC (Governors America Corp.)

Скачать документацию на ЭЛЕКТРОННЫЙ РЕГУЛЯТОР ОБОРОТОВ GAC

Цена ЭЛЕКТРОННЫЙ РЕГУЛЯТОР ОБОРОТОВ GAC различных вариантов исполнения

МодельИсполнениеЦена с
НДС 20%
электронныйактуатор100 000

Электронный регулятор оборотов GAC (Governors America Corp.)

РЕГУЛЯТОР ОБОРОТОВ GAC:

  • Электронный регулятор оборотов GAC (Governors America Corp.) в автоматическом режиме осуществляет регулировку оборотов двигателя, что позволяет улучшить топливную экономичность, увеличить моторесурс двигателя, повысить надежность в аварийных ситуациях, снизить токсичность отработанных газов, повысить качество вырабатываемой электрической энергии

Электронный регулятор предназначен для двигателей внутреннего сгорания используемых в составе:

  • дизельных электростанций
  • силовых дизельных приводов и насосных установок (дополнительное оборудование) для одновременной (синхронной) работы нескольких установок Дизель-Систем

Актуаторы компании GAC обеспечивают высокую надёжность и точность регулирования для пропорционального распределения крутящего момента. Специально разработаны для установки на топливные насосы (ТНВД), чтобы обеспечить максимальную эффективность сервопривода. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Актуаторы компании GAC для установки на двигателях имеют надёжную конструкцию для работы в условиях высоких температур и оптимально подходят для наружного размещения на двигателе. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Универсальные актуаторы компании GAC являются электрическими сервоприводами пропорционального типа для механического управления дроссельной заслонкой или топливной рейкой ТНВД. Они обеспечивают оптимальный контроль подачи топлива и идеально подходят для внешнего размещения на корпусе двигателя. Поскольку конструкция актуаторов не имеет трущихся деталей и все компоненты герметично закрыты соответствующими уплотнениями, достигается высокая надежность и не требуется техническое обслуживание в процессе всего срока эксплуатации.

Регуляторы оборотов компании GAC обеспечивают точное регулирование оборотов двигателя. Они разработаны и производятся в различных конфигурациях для различных вариантов применения. При их разработке использованы передовые аналоговые и цифровые технологии контроля и управления. В каждом регуляторе предусмотрена защита от обратной полярности аккумулятора, а также обеспечивается надежная работа в случаях потери сигнала датчика оборотов или напряжения аккумулятора. Широкий спектр требований при различных вариантах применения обеспечивается постоянным или переменным регулированием оборотов при изохронных или переходных режимах работы двигателя. Все сетевые платы надежно герметизированы для защиты от вибраций и влажности.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector