Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор оборотов для электроинструмента с функцией плавного пуска

Регулятор оборотов для электроинструмента с функцией плавного пуска

Всем доброго времени суток. Предлагаю вашему вниманию вариант изготовления устройства для регулировки оборотов электроинструментов, оснащенных коллекторными электродвигателями, с возможностью плавного пуска.

Идея была совместить достаточно простой регулятор, плавный пуск и удлинитель в одном устройстве. А так же собрать устройство в корпусе, изготовление которого было описано во второй части ранее опубликованной статьи. Использовать для управления нагрузкой переключатели, рассчитанные на небольшой ток (так, как они менее габаритные). Собрать достаточно простую схему с минимальным количеством компонентов и возможностью перестройки управляющей цепи без перепайки.

В данной конструкции использовано:
— Ранее изготовленный корпус.
— Сетевой провод с вилкой.
— Сетевая розетка.
— Кабельный ввод PG7.
— Фольгированный стеклотекстолит.
— Крепеж М3, М4.
— Радиодетали согласно схеме.

Устройство собрано на базе ИС фазового регулятора К1182ПМ1Р. Данная ИС прекрасно работает в ранее изготовленном устройстве плавного пуска. По этому решил изготовить аналогичную схему, но с большим функционалом и возможностью дальнейшей модернизации.

Схема управления фазовым регулятором (контакты 3 и 6 ИС) основана на стандартных схемах подключения указанных в справочном листке к данной ИС. Для удобства подключения управляющих элементов и возможности дальнейших модификаций (вплоть до подключения ДУ, без лишней пайки), была установлена контактная панелька из разборки радиохлама, с шагом контактов под стандартные «джамперы». Резистор R1 в конечном итоге пока не потребовался (изначально устанавливался).

Принципиальная схема.

Печатная плата получилась размерами 51х65мм (вид со стороны установленных радиодеталей).

Т.к. аналогичные схемы являются источником помех в сети переменного тока, то в качестве простейшего помехоподавляющего фильтра использован конденсатор С4 из схемы фильтра от электроинструмента (данные конденсаторы используются и в цепях подавления помех регуляторов заводского изготовления).

Используемый в устройстве симистор имеет изолированный теплоотвод, поэтому дополнительной изоляции при креплении его к радиатору не потребовалось. К сожалению, контактные колодки (XP1, XP2) оказались видимо из разных партий, поэтому встали на плату не совсем ровно.




Ранее изготовленный корпус был доработан для установки печатной платы, элементов управления, колодки подключения нагрузки и кабельного ввода.



Для подключения нагрузки используется колодка от стандартной сетевой розетки.


Подложка под колодку вырезана из рейки сечением 15х30мм. Далее колодка крепится винтами М4.



Печатная плата крепится в корпусе четырьмя винтами М3. Винты крепятся к корпусу с помощью двух гаек (каждый), которые и образуют опорные стойки высотой 5мм. Для удобства сборки устройства к элементам управления (SA1, SA2, R2) заранее были припаяны разъёмы для подключения к контактной панельки печатной платы. Благодаря этому окончательная сборка устройства производится, без какой либо дополнительной пайки. Потом была изготовлена наклейка со шкалой для резистора R2.








Работает данное устройство следующим образом.

Когда времязадающий конденсатор С1 отключен от цепи управления (положение переключателя SA1 — MR), устройство работает как простой регулятор. Включение нагрузки осуществляется размыканием контактов переключателя SA2 (положение переключателя SA2 — ON). Отключение нагрузки осуществляется замыканием контактов переключателя SA2 (положение переключателя SA2 — OFF).

При практическом использовании нагрузки мощностью до 1,3 кВт, радиатор симистора становится лишь слегка тепленьким. Поэтому не стал делать вентиляционных отверстий, дабы пыль, опилки и прочая грязь не попадали внутрь корпуса.

Внимание. Данная схема корректно работает только с электроинструментом без встроенных регуляторов оборотов и прочей дополнительной электроники.

Если что-то в описании упущено, надеюсь, эти нюансы можно рассмотреть на представленных фото. Заранее прошу прощения за возможные ошибки и опечатки.

Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить. Отзывы, идеи, предложения по улучшению конструкции и комментарии приветствуются.

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Читать еще:  В чем состоит принципиальная разница смесеобразования в дизелях и бензиновых двигателях

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Управление коллекторным двигателем с помощью U2010B

Как переделывал:
Из специализированных микросхем приглянулись Phase Control фирмы Atmel. Там есть простой вариант на U2008B, но в ней не предусмотрено обратной связи, чтобы поддерживать заданные обороты. Есть и U211B(или U209B — урезанный вариант U211B), но для нее нужен тахогенератор, который у точила не предусмотрен, поэтому наиболее подходящая для моих целей оказалась U2010B, у которой есть и обратная связь по току и защита от перегрузки и плавный старт.

( Кстати, схема на U211b с таходатчиком мной реализована тут) .

Схему взял из даташита без какой-либо переделки:

Делали обозначены согласно оригинальной схеме:
R1 — 2 шт. по 36 кОм 2 Вт (в оригинале один резистор на 18 кОм 2 Вт, но он ощутимо греется, поэтому лучше сделать из двух)
R2 — 1 шт. 330 кОм 0,125 Вт
R3 — 1 шт. 180 Ом 0,5 Вт
R4 — 1 шт. 3,3 кОм 0,125 Вт
R5 — 1 шт. 3,3 кОм 0,125 Вт
R6 — надо подбирать по формуле
R7 — 1 шт. 7,5 кОм 0,125 Вт
R8 — 1 шт. подстроечный 470 кОм
R10 — 1 шт. подстроечный 100 кОм
R11 — 1 шт. подстроечный 1 мОм
P1 — 1 шт. переменный резистор 50 кОм (с ручкой регулировки и выключателем)
Симистор BTA16-600
Конденсаторы:
Электролитические
С1 — 1 шт. 22 мкф х 50 вольт
С2 — 1 шт. 4,7 мкф х 50 вольт
С7 — 1 шт. 1 мкф х 50 вольт
Керамические с выводами
С3 — 1 шт 0,015 мкф
С4 — 1 шт 0,15 мкф
С5 — 1 шт 0,1 мкф
Светодиод D3 любой малогабаритный(5 мм) красного цвета. Обозначает перегрузку.
И не забыть про микросхему U2010b

ЗЫ. R14 я вообще не ставил, а заменил перемычкой

Для нее разработал маленькую печатную плату размером 60х65 мм:

Обозначение элементов соответствует даташиту. Переменный резистор(обозначен P1) с выключателем(это чуточку доработал схему) и контакты выключателя разрывают сетевое напряжение(на схеме этого нет).

Вытравил и просверлил печатную плату:

На всех схемах только обозначено напряжение на R6 и нигде не указано каким оно должно быть. Проведя некоторые исследования, натолкнулся на ответ техподдержки фирмы:

Question
Is the 250 mV value also valid for 120V systems, or is it only valid for 240V?
Also, is the signal peak-to-peak or RMS?

Answer
Independent of supply voltage, the 250 mV value is the suggested voltage drop on the current sense resistor R6. This value should be considered being inside the linear signal transmission of current detection. The 250 mV value defines the effective RMS value, hence the corresponding peak value measures about 350 mV. Refer to the typical diagram of load current detection in the datasheet, Fig.5-7.

Читать еще:  Что такое защита двигателя от перегрева в мясорубке

—————
Из их ответа ясно, что падение на резисторе 250 милливольт является не пиковым, а действующим и не зависит от напряжения питания сети. Исходя из этого R6 можно легко рассчитать.

Рассчитать R6 можно исходя из мощности двигателя по формуле:
R6 = U R6 /(P двиг /U пит ), где U R6 — напряжение на R6 (250 мВ), P двиг — мощность двигателя, U пит — напряжение питания сети.
Для точила с двигателем мощностью 150 ватт рассчитываем: R6= 0,25/(150/220) = 0,37 Ом

Настройка схемы:
Переменный резистор P1 установить на минимальные обороты двигателя, т.е. по схеме движок потенциометра должен быть повернут к резистору R14 на схеме, но, т.к. я его на плате не разводил, то к минусу C7 и подстроечным резистором R8 выставить самые минимальные обороты двигателя. Я сделал, чтобы двигатель не крутился, но на нем уже было около 20-ти вольт. Если сделать, чтобы совсем был ноль, то тогда становится слишком нелинейная зависимость управления резистором P1, т.е. при его повороте сначала двигатель не крутится, а потом резко «срывается с места».
Внимание! Еще пришлось добавить чуточку емкости C3, а иначе за период выдавалось несколько импульсов управления и схема работала неправильно,т.е. обороты двигателя практически не регулировались и двигатель работал на полную. Выяснить причину удалось с помощью осциллографа. Емкость 10n, похоже, рассчитана на 60-герцовую сеть. Я ему добавил параллельно емкость 102K(0,001 мкф), т.е. в итоге C3 получился 0,011 мкф (думаю, можно даже поставить 0,015 мкф) и схема сразу заработала правильно.
Еще одна тонкость — это нужно правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по поведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует(т.е. делает слишком большую компенсацию нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться компенсация нагрузки. У меня при расчетном значении 0,37 Ом на практике лучше получилось с 0,33 Ом. Резистором R10 как раз настраивается компенсация нагрузки. Я настраивал так: Включил на средних оборотах и притормаживая вал двигателя через тряпку, выставил этим резистором, чтобы обороты не менялись при изменении нагрузки. Одновременно с этим поглядывал на вольтметр подключенный к двигателю. При увеличении нагрузки на двигатель схема прибавляет напряжение и двигатель крутится с одинаковой скоростью. На максимальных оборотах настраивать бесполезно, т.к. там уже подается полное напряжение сети и обороты компенсировать нечем.
А вот как настраивается и на что действует резистор R11, я так и не понял. Крутил его от одного края до другого и при этом тормозил двигатель, чтобы попытаться «поймать» уровень перегрузки, но может из-за того, что двигатель слишком маломощный и на нем даже в заклиненном состоянии ток не очень большой, перегрузка так и не срабатывала.

В общем схема работает именно так, как и ожидалось, а точило теперь неплохо держит обороты не только при изменении нагрузки, но и при изменении питающего напряжения. Я ЛАТРом на средних оборотах менял сетевое напряжение от 200 до 240 вольт и обороты держались одинаковыми. Т.е. теперь схемы зажигания отлаживать будет гораздо удобнее. А еще теперь максимальные обороты возросли, т.к. новая схема «на максимуме» полностью открывает симистор, а старая вольт 15 оставляла, т.е. симистор открывался с задержкой и часть периода не использовалась.

Новая отлаженная схема почти установленная вместо старой (старая на фото в левом нижнем углу) .

ЗЫ. Резистор R3 увеличил на 51 Ом. Импульсы управления с микросхемы идут амплитудой 8 вольт, поэтому R3 можно сделать побольше 180 Ом обозначенных на схеме.

ЗЫ.ЗЫ. Как же мне теперь нравится как двигатель с этой новой схемой здорово держит обороты. Можно теперь легко задать обороты 1. 2 оборота в секунду и магнит стенда крутится абсолютно ровно и без рывков. Раньше такие обороты было просто невозможно установить. Сила магнита не маленькая и раньше двигатель или быстро мог крутить магнит или останавливался. Двигатель точила работает так, как будто у него обратная связь с тахометром, хотя на самом деле нет.

Кому интересно и захочет повторить конструкцию, то выкладываю печатную плату в формате Sprint-Layout 6.0.
По просьбам трудящихся развел плату и для корпуса Dip16.
В архиве теперь раводка и для SMD и для Dip корпусов U2010b, а также компактная на СМД деталях для гравера.

Читать еще:  Включается кондиционер при запуске двигателя на киа церато

ЗЫ. Спасибо ironcover за найденную ошибку. Конденсатор C1 у меня был разведен и припаян неправильно. Самое удивительное, что уже столько времени проработал и не рванул. В печатной плате я исправил и обновил ссылку.

А это вторая плата, которая управляет кухонным вентилятором:

(Для фото сессии, коробочку с платой, приклеенной на двухсторонний скотч, оторвал от стены)

А это, как переделывал простенькую болгарку под плавный старт и регулировку оборотов(картинка кликабельная):

Добавил еще плату для гравера, для замены его родной простейшей схемы, была как и заводская у точила.
Плата 23х52 мм:

Регулятор оборотов коллекторного двигателя

На сегодняшний день практически все современные электроинструменты оснащены коллекторными двигателями. Они относятся к более универсальным конструкциям, поскольку могут работать не только при переменном, но и при постоянном напряжении. Однако данный тип электродвигателей обладает высокой частотой оборотов, которая не всегда требуется в рабочих процессах. В подобных ситуациях изменить частоту вращения и обеспечить плавный пуск поможет регулятор оборотов коллекторного двигателя, способный создавать наиболее оптимальные скоростные режимы.

  1. Устройство и принцип работы
  2. Необходимость регулятора оборотов
  3. Действие регулятора оборотов
  4. Выбор регулятора оборотов
  5. Самостоятельная сборка регулятора

Устройство и принцип работы

Современная бытовая техника и электроинструменты укомплектованы коллекторными и асинхронными электродвигателями. В самых современных устройствах второй вариант практически не применяется, поэтому более подробно следует рассматривать электродвигатели коллекторного типа.

Эти устройства отличаются компактностью, простотой управления и повышенной мощностью. Принцип действия такой же, как и у всех электродвигателей, основанный на вращении прямоугольной рамки, помещенной между магнитными полюсами, и по которой пропущен электрический ток.

В коллекторных двигателях функцию вращающейся рамки выполняют скользящие контакты, к которым также подводится ток. После поворота рамки на 180 ток начинает течь по этим контактам в обратном направлении. Сама рамка будет вращаться в прежнем напрявлении, при этом плавного вращения она не обеспечивает. Для того чтобы вращение было плавным, в конструкции двигателя используется большое количество этих рамок.

В состав агрегата входят следующие элементы:

  • Вращающаяся часть является ротором, а внешний магнит – статором.
  • Основой скользящих контактов являются графитовые щетки, через которые к вращающемуся якорю подается напряжение.
  • Характеристики вращения отслеживаются тахогенератором. Если равномерность движения нарушается, он выполняет корректировку напряжения, обеспечивая более плавный ход.

Статор может состоять не только из одного, но и из двух магнитов, соответственно, с двумя парами полюсов. В отдельных конструкциях используются не статические магниты, а электромагнитные катушки. Скорость двигателя регулируется очень просто – всего лишь путем изменения величины подаваемого напряжения. Ось вращения соединяется с рабочей частью напрямую, без каких-либо промежуточных элементов.

Необходимость регулятора оборотов

Регулирующее устройство по своей сути является частотным преобразователем. Схема регулятора оборотов создана на основе мощного транзистора, с помощью которого инвертируется напряжение, обеспечивается плавная остановка и пуск.

Все необходимые действия осуществляются посредством ШИМ – широтно-импульсного модулятора, управляющего электрическими устройствами. С его помощью создаются синусоиды заданной конфигурации для постоянного и переменного тока.

За счет установленных частотных преобразователей, регулятор оборотов коллекторного электродвигателя способен точно контролировать необходимые электрические процессы. В результате, скорость вращения может быть изменена в сторону увеличения или уменьшения, обороты поддерживаются на установленном уровне, а сам инструмент оказывается защищенным от резких перепадов оборотов.

Электродвигатель использует только то количество электроэнергии, которое необходимо для выполнения работы. Экономия потребления электричества достигает до 50% при снижении скорости вращения всего лишь на 20%

Действие регулятора оборотов

Работа регулятора оборотов коллекторного двигателя происходит следующим образом.

После запуска агрегата на полной мощности, электрическому току приходится преодолевать сопротивление полной нагрузки, повторяющееся несколько раз. Под действием тока обмотки двигателя деформируются и начинают выделять тепло в течение продолжительного времени. Это приводит к существенному снижению ресурса и движок становится менее долговечным.

Таким образом, регулятор выполняет функцию ступенчатого инвертора, осуществляющего двойное преобразование энергии.

Частотный регулятор напряжения выпрямляет ток на 220 В или 380 вольт, в зависимости от входного напряжения. Для этих целей используется выпрямляющий диод, расположенный на входе. После этого ток фильтруется через конденсаторы, далее происходит формирование широтно-импульсной модуляции. В конечном итоге после регулировки система оказывается подготовленной к созданию необходимой конфигурации синусоиды.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector