Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Пошаговая инструкция сборки ветрогенератора 12В своими руками

Пошаговая инструкция сборки ветрогенератора 12В своими руками

Сделать ветряк самостоятельно кажется непосильной задачей, которая отнимает много времени и сил. Но следуя пошаговой инструкции можно легко и быстро достичь желаемого результата за небольшие деньги.

  • Подбор генератора
  • Лопасти
  • Сборка генератора с лопастями
  • Установка турбины
  • Элементы мачты
  • Схема контроллера
  • Затраты

Задавшись целью обзавестись ветрогенератором, многие хотят его сделать самостоятельно. Как показали исследования в интернете — большинство так и делает, но такое решение отняло у них очень много времени и усилий (по крайней мере, самая первая сборка). Чаще всего применяется схема сборки на магнитах постоянного тока. Этот путь является значительно проще, чем самостоятельное создание самого генератора. По этой причине рекомендуется запастись терпением и начинать поиски двигателя, который бы отлично подходил по параметрам, чтобы сделать ветрогенератор своими руками.

Подбор генератора

Как оказалось, большинство использует в виде генератора старый мотор из компьютеров. Такой мотор является раритетом и применялся еще во времена, когда у вычислительных машин использовались большие ленточные катушечные накопители. Среди всех возможных вариантов самым лучшим можно считать двигатель постоянного тока от производителя Ametekна 30 вольт. Это самый подходящий вариант, чтобы сделать ветрогенератор, так как даже легкое вращение его вала может свободно генерировать 12 В. Данный двигатель довольно тяжело найти, но на торговых площадках ebay и Amazon полно его аналогов. Дополнительно в описании знающие люди указывают возможность их использования в качестве генератора для ветряка.

Подбор двигателя нужно делать с учетом следующих параметров:

  • постоянный ток;
  • низкие обороты;
  • высокое напряжение;
  • высокая сила тока.

Все дело в том, что двигатель, рассчитанный на 7200 оборотов и напряжением в 24 В, при низких оборотах вряд ли сможет дать требуемые значения. Но если взять 30-вольтовый мотор с номинальным значением в 325 об/мин, то вполне реально ожидать от него напряжение в 12 вольт даже при характерных ветряку низких оборотах.

Примерная стоимость того же Ametek примерно 26 $. Можно найти и немного дешевле двигатель, но это не столь важно. При обычном легком толчке он зажигает без проблем лампу на 12 вольт, что нам и требовалось. Итак, двигатель-генератор мы нашли. Приступаем к следующему шагу — расчету лопастей.

Лопасти

В качестве лопастей, создавая ветрогенератор, можно без проблем использовать обычную сантехническую трубу из ПВХ длиной 60 см и диаметром 15 см. Разрежьте ее на 4 части. Это будут заготовки лопастей. Затем вырежьте квадрат 5х5 у основания для создания крепежа в дальнейшем. Чтобы сохранить точную форму и не срезать лишнего рекомендуется просверлить изначально небольшое отверстие в нужном месте. Далее просто обрезаете лишний пластик вдоль заготовки по диагонали. Все, первая лопасть готова.

Используйте вырезанный элемент как шаблон для создания остальных трех лопастей. Также он будет играть роль запасной детали, если что-то пойдет не так. Двигатель на наш ветрогенератор мы выбрали и изготовили лопасти. Теперь нужно их сделать одним единым.

Сборка генератора с лопастями

Для объединения лопастей с генератором можно применять обычный шкив как основу и алюминиевый диск диаметром 13 см. Скрепив их вместе с использованием болтового соединения, вы получите отличную легкую и практичную основу, которая будет являться промежуточным звеном, передающим силу ветра с лопастей, вращая ветрогенератор. Сами лопасти крепятся также при помощи болтов. В магазине сантехники можно приобрести колпак, чтобы скрыть все металлические детали и придать ветряку большей обтекаемости. Практика показала, что все эти параметры позволяют даже легкому ветерку создавать вращения и при этом ветрогенератор вырабатывает положенные ему 12 В.

Установка турбины

Для установки турбины своими руками можно использовать обычную деревянную подставку из бруска длиной 84 см. Также желательно использовать кусок пластиковой трубы диаметром 10 см для защиты двигателя от разного рода осадков. В качестве хвоста для ветряка на 12 вольт рекомендуется применять алюминиевую пластину размером 21х35 см и толщиной 20-30 мм. Она идеально подойдет как противовес и как элемент для поворота установки по ветру. Все размеры не критичны и могут быть немного изменены под особенности конструкции.

Также рекомендуется провести шлифовку всех элементов и закругление углов для более привлекательного вида и лучших аэродинамических показателей. Затем покройте все деревянные части несколькими слоями краски. Цвет можете выбрать любой, так как от этого ничего не зависит.

Для большего удобства на краю, где будет располагаться сам генератор, можно прикрутить несколько планочек, чтобы он плотно сидел на своем месте. Крепиться мотор при помощи хомутов. Ветрогенератор готов. Теперь нужно установить его на мачте.

Элементы мачты

Конечный результат при создании ветряка своими руками полностью зависит от возможности поворачиваться в зависимости от направления ветра и основной высоты.

Обычная железная труба диаметром 2,5 сантиметра легко скользит внутри электрического трубопровода сечением 3 сантиметра. На бруске установите железный фланец с посадочным местом под трубу 2,5 см. Центр ее должен находиться примерно в 19 см от края. Далее просто вверните кусок трубы в фланец. Также нужно просверлить отверстие в бруске под провода, которые будут проходить через него.

Основание можно сделать в следующей последовательности:

  1. Из фанеры вырезается круг диаметром 60 см;
  2. К нему крепятся два металлических сантехнических колена диаметром 2,5 см при помощи фланцев;
  3. Посредине устанавливается тройник диаметром 3,5 см, на который накручивается основная труба;
  4. В деревянном диске нужно просверлить несколько отверстий для закрепления его на земле.

Труба, которая будет служить мачтой, может использоваться как разборная, так и цельная. Длина ее должна быть не менее 3 метра, а диаметр 3,5 см. Для закрепления трубы можно использовать обычные веревки с хомутами.

Мы создали мачту и теперь можем смело устанавливать наш 12-вольтовый ветрогенератор в рабочее положение. При этом не нужно забывать о подсоединении к нему проводов и протягивании их через трубу. У основания требуется проделать отверстие, чтобы их вывести и подсоединить к контроллеру, который мы сейчас и рассмотрим.

Схема контроллера

Контроллер позволяет регулировать заряд в батареях и при этом не дает им излишка энергии. Если АКБ полные, то это устройство перенаправляет ток напрямую к потребителю. Контроллер на 12 вольт можно легко найти в любом магазине электроники. Но его можно сделать и своими руками, что в положительно отразится на цене.

На рисунке приведена схема сборки контроллера. Она немного изменена в силу того, что большое количество стандартных деталей очень тяжело найти. Любой радиолюбитель сможет ее собрать в кучу.

Установив ветряк и присоединив контроллер мы видим, что наша конструкция работает и даже мультиметр демонстрирует практически точное значение в 12 вольт при слабом ветре. Сборка ветрогенератора своими руками выполнена.

Затраты

Наверное, самой важной частью являются затраты. Проведя небольшое исследование рынка можно прийти к выводу, что на закупку всех элементов с учетом инвертора и батарей, наш ветряк, собранный своими руками, обойдется не более 250 $. Заводские ветрогенераторы имеют практически такие же характеристики, как и тот, что вы соберете своими руками. Вот только придется за них выложить больше 1000 $.


Генератор своими руками из двигателя постоянного тока своими руками

База самоделок для всех!

  • Главная
  • Самоделки
  • Дизайнерские идеи
  • Видео самоделки
  • Книги и журналы
  • Партнеры
  • Форум
  • Самоделки для дачи
  • Приспособления
  • Автосамоделки
  • Электронные самоделки
  • Самоделки для дома
  • Альтернативная энергетика
  • Мебель своими руками
  • Строительство и ремонт
  • Для рыбалки и охоты
  • Поделки и рукоделие
  • Самоделки из материала
  • Самоделки для ПК
  • Cуперсамоделки
  • Другие самоделки

Мотор-генератор своими руками (опыты, видео, принцип работы)

Изобретение относится к области электротехники и электроэнергетики, в частности к способам и оборудованию для генерирования электрической энергии, и может быть использовано в автономных системах электроснабжения, в автоматике и бытовой технике, на авиационном, морском и автомобильном транспорте.

Читать еще:  Что такое блок управления двигателем определение

За счет нестандартного способа генерации, и оригинальной конструкции мотора-генератора, режимы генератора и электромотора, объединены в одном процессе, и неразрывно связаны. В результате чего, при подключении нагрузки, взаимодействие магнитных полей статора и ротора образует вращающий момент, который по направлению совпадает с моментом, создаваемым внешним приводом.

Другими словами, при увеличении мощности потребляемой нагрузкой генератора, ротор мотора-генератора начинает ускоряться, и соответственно понижается мощность, потребляемая внешним приводом.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента.

Результаты экспериментов, которые привели к изобретению мотора-генератора.

Уже давно по Интернету ходят слухи о том, что генератор с кольцевым якорем Грамма, был способен вырабатывать электрической энергии больше, чем было затрачено механической и происходило это за счет того, что под нагрузкой не было тормозящего момента. Эта информация подтолкнула нас на проведение ряда экспериментов с кольцевой обмоткой, результаты которых мы покажем на этой странице. Для экспериментов, на тороидальный сердечник, были намотаны 24шт., не зависимые обмотки, с одинаковым количеством витков.

1) Вначале вес обмотки были включены последовательно, выводы на нагрузку расположены диаметрально. В центре обмотки был расположен постоянный магнит с возможностью вращения.

После того как магнит с помощью привода приводился в движение, подключалась нагрузка и лазерным тахометром измерялись обороты привода. Как и следовало ожидать, обороты приводного двигателя начинали падать. Чем большую мощность потребляла нагрузка, тем сильнее падали обороты.

2) Для лучшего понимания процессов происходящих в обмотке, вместо нагрузки был подключен миллиамперметр постоянного тока.
При медленном вращении магнита, можно наблюдать, какая полярность и величина выходного сигнала, в данном положении магнита.

Из рисунков видно, когда полюсы магнита, находятся напротив выводов обмотки (рис. 4;8), ток в обмотке равен 0. При положении магнита, когда полюсы находятся в центре обмотки, мы имеем максимальное значение тока (рис. 2;6).

3) Нa следующем этапе экспериментов, использовалась только одна половина обмотки. Магнит также медленно вращался, и фиксировались показания прибора.

Показания прибора полностью совпадали с предыдущим экспериментом (рис 1-8).

4) После этого к магниту подключили внешний привод и начали его вращать на максимальных оборотах.

При подключении нагрузки, привод начал набирать обороты!

Другими словами, при взаимодействии полюсов магнита, и полюсов образующихся в обмотке с магнитопроводом, при прохождении через обмотку тока, появился вращающий момент, направленный по ходу вращающего момента созданного приводным двигателем.

Рисунок 1, идет сильное торможение привода при подключении нагрузки. Рисунок 2, при подключении нагрузки привод начинает ускоряться.

5) Что бы понять что происходит, мы решили создать карту магнитных полюсов, которые появляются в обмотках при прохождении через них тока. Для этого была проведена серия экспериментов. Обмотки подключались в разных вариантах, а на концы обмоток подавались импульсы постоянного тока. При этом на пружине был закреплен постоянный магнит, и по очереди располагался рядом с каждой из 24 обмоток.

По реакции магнита (отталкивался он или притягивался) была составлена карта проявляющихся полюсов.

Из рисунков видно, как проявлялись магнитные полюсы в обмотках, при различном включении (желтые прямоугольники на рисунках, это нейтральная зона магнитного поля).

При смене полярности импульса, полюсы как и положено менялись на противоположные, по этому разные варианты включения обмоток, нарисованы при одной полярности питания.

6) Па первый взгляд, результаты на рисунках 1 и 5 идентичны.

При более подробном анализе, стало ясно, что распределение полюсов по окружности и «размер» нейтральной зоны довольно сильно отличаются. Сила с которой магнит притягивался или отталкивался от обмоток и магнитопровода показана градиентной заливкой полюсов.

7) При сопоставлении данных экспериментов описанных в пунктах 1 и 4, кроме кардинальной разницы в реакции привода на подключение нагрузки, и существенной разницы в «параметрах» магнитных полюсов, были выявлены и другие отличия. При проведении обоих экспериментов, параллельно нагрузке был включен вольтметр, а последовательно с нагрузкой включался амперметр. Если показания приборов из первого эксперимента (пункт 1), взять за 1, то во втором эксперименте (пункт 4), показание вольтметра так же было равно 1. По показания амперметра составляло 0,005 от результатов первого эксперимента.

8) Исходя из изложенного в предыдущем пункте, логично предположить, если в незадействованной части магнитопровода, сделать немагнитный (воздушный) зазор, то сила тока в обмотке должна увеличиться.

После того как был сделан воздушный зазор, магнит снова подключили к приводному двигателю, и раскрутили на максимальные обороты. Сила тока действительно возросла в несколько раз, и стала составлять примерно 0,5 от результатов эксперимента по пункту 1,
но при этом появился тормозной момент на привод.

9) Способом, который описан в пункте 5, была составлена карта полюсов данной конструкции.

10) Сопоставим два варианта

Не трудно предположить, если увеличить воздушный зазор в магнитопроводе, геометрическое расположение магнитных полюсов по рисунку 2, должно приблизиться к такому расположению как в рисунке 1. А это в свою очередь, должно привести к эффекту ускорения привода, который описан в пункте 4 (при подключении нагрузки, вместо торможения, создается добавочный момент к вращающему моменту привода).

11) После того как зазор в магнитопроводс был увеличен до максимума (до краев обмотки), при подключении нагрузки вместо торможения, привод снова начал набирать обороты.

При этом карта полюсов обмотки с магнитопроводом выглядит так:

На основе предложенного принципа генерации электроэнергии, можно конструировать генераторы переменного тока, которые при повышении электрической мощности в нагрузке, не требуют повышения механической мощности привода.

Принцип работы Мотора Генератора.

Согласно явлению электромагнитной индукции при изменении магнитного потока проходящего через замкнутый контур, в контуре возникает ЭДС.

Согласно правилу Ленца: Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. При этом не имеет значения, как именно магнитный поток, движется по отношению к контуру (Рис. 1-3).

Способ возбуждения ЭДС в нашем моторе-генераторе аналогичен рисунку 3. Он позволяет использовать правило Ленца для увеличения вращающего момента на роторе (индукторе).

1) Обмотка статора
2) Магнитопровод статора
3) Индуктор (ротор)
4) Нагрузка
5) Направление вращения ротора
6) Центральная линия магнитного поля полюсов индуктора

При включении внешнего привода, ротор (индуктор) начинает вращаться. При пересечении начала обмотки магнитным потоком одного из полюсов индуктора в обмотке индуцируется ЭДС.

При подключении нагрузки, в обмотке начинает течь ток и полюса возникшего в обмотках магнитного поля согласно правилу Э. X. Ленца направлены на встречу возбудившего их магнитного потока.
Так как обмотка с сердечником расположена по дуге окружности, то магнитное поле ротора, движется вдоль витков (дуги окружности) обмотки.

При этом в начале обмотки согласно правилу Ленца, возникает полюс одинаковый с полюсом индуктора, а на другом конце ротивоположный. Так как одноименные полюса отталкиваются, а противоположные притягиваются, индуктор стремится принять положение, которое соответствует действию этих сил, что и создает добавочный момент, направленный по ходу вращения ротора. Максимальная магнитная индукция в обмотке достигается в момент, когда центральная линия полюса индуктора находится напротив середины обмотки. При дальнейшем движении индуктора, магнитная индукция обмотки уменьшается, и в момент выхода центральной линии полюса индуктора за пределы обмотки, равна нулю. В этот же момент, начало обмотки начинает пересекать магнитное поле второго полюса индуктора, и согласно правилам, описанным выше, край обмотки от которого начинает отдаляться первый полюс начинает его отталкивать с нарастающей силой.

Рисунки:
1) Нулевая точка, полюсы индуктора (ротора) симметрично направлены на разные края обмотки в обмотке ЭДС=0.
2) Центральная линия северного полюса магнита (ротора) пересекла начало обмотки, в обмотке появилась ЭДС, и соответственно проявился магнитный полюс одинаковый с полюсом возбудителя (ротора).
3) Полюс ротора находится в центре обмотки, и в обмотке максимальное значение ЭДС.
4) Полюс приближается к концу обмотки и ЭДС снижается до минимума.
5) Следующая нулевая точка.
6) Центральная линия южного полюса входит в обмотку и цикл повторяется (7;8;1).

Читать еще:  Японский двигатель в уаз буханка тюнинг

Видео-ролик первого эксперимента:

Видео-ролик второго эксперимента:

Мотор из генератора своими руками | Делаем электродвигатель

Многие из нас, видя проезжающие по городу электро- скутеры, велосипеды или самокаты, с завистью оборачиваются вслед. Еще бы, пользоваться любимым транспортным средством прилагая минимум усилий – мечта каждого. Вот только стоят они весьма недешево. Вот тут-то и возникает мысль: а нельзя ли переделать свой велосипед в электрический?
Необходимым элементом для переделки является безщеточный мотор постоянного тока (BLDC), но его цена на рынке достаточно высока. В нашей статье мы расскажем вам, как сделать такой мотор из генератора своими руками. Это значительно уменьшит расходы на переделку велосипеда. Ведь б/у генератор в хорошем состоянии можно недорого купить на любой автомобильной разборке.

Для того, чтобы сделать мотор из генератора, вам понадобятся:

  • старый автомобильный генератор;
  • плоскогубцы, набор ключей и отверток;
  • контроллер регуляторов оборотов;
  • паяльник;
  • провода;
  • две аккумуляторные батареи на 6В;
  • мультиметр;
  • подшипники (при необходимости их замены).
  1. Шаг 1. Разбираем автомобильный генератор
  2. Шаг 2. Собираем мотор
  3. Шаг 3. Проводим испытание

Шаг 1. Разбираем автомобильный генератор

Раскручиваем четыре длинных болта, соединяющих генератор.

Отсоединяем регулятор напряжения (реле-регулятор в сборе со щетками) и снимаем его.

Придерживая шкив, отворачиваем гайку крепления и снимаем его.

Снимаем все шайбы, крыльчатку и вынимаем шпонку.

Снимаем переднюю крышку, вынимаем ротор с коллектором и подшипники.

Если подшипники износились – замените их на аналогичные.

Откручиваем статор от задней крышки и выпрямительного блока и вынимаем его.

Отсоединяем и удаляем блок выпрямителей (диодный мост).

Зачищаем и соединяем в «треугольник» выводы обмоток статора.

Залуживаем их и припаиваем к ним провода.

Отсоединяем два контакта реле-регулятора от щеток и так же припаиваем к ним провода.

Шаг 2. Собираем мотор

Соединяем провода статора в жгут и вставляем его в заднюю крышку.

Ставим на место ротор с коллектором и подшипниками, надеваем переднюю крышку и стягиваем все длинными болтами.

Присоединяем на место щеточный блок.

Ставим на место шпонку, одеваем крыльчатку, шайбы и шкив и затягиваем все гайкой.

Шаг 3. Проводим испытание

Перед подключением источников питания к мотору обязательно проверьте мультиметром отсутствие межвиткового короткого замыкания, а также пробивания на корпус!

Подключаем выводы со щеток мотора к одному аккумулятору, а выводы со статора, через контроллер регуляторов оборотов – к другому.

В результате мы из старого автомобильного генератора получили BLDC мотор с возможностью регулировки оборотов.

Если вам понравилась наша статья, поставьте лайк 👍

✔️ Подписывайтесь на сайт, чтобы не пропустить ничего интересного!⚡

Самодельный ветряк с генератором из коллекторного двигателя

Когда случилась перестройка, многим пришлось менять профессию и болезненно искать новое приложение рукам и уму. Среди многих других попыток были у меня и ветряки.

Я добросовестно посвятил этому год с лишним. Довольно быстро понял, что без основательной учебы ничего путного не выйдет. Много было непонятного, но постепенно прояснялось. Наконец, седьмой по счету экземпляр заработал более-менее в соответствии с расчетными характеристиками.

Ветряк задумывался, как источник энергии для дачи с посещением неполную неделю. Замышлялся, как коммерческий продукт. Отсюда и размеры.

Диаметр турбины 1.15 — 1.17м, трехлопастная. Наиболее дискутируемый вопрос количества лопастей решился между двух и трех в пользу трех из-за того, что хотелось, чтобы турбина увереннее работала при слабом ветре. Расчетная скорость 600 — 700 об/мин.

Генератор — коллекторный двигатель 36В с постоянными магнитами болгарского производства. Кажется, эти двигатели массово применялись в ЭВМ семейства ЕС.

Диаметр двигателя 80мм, длина что-то около 140мм?

Старательно снял его характеристики на стенде, используя тахометр, калиброванные нагрузки и прочее. Получил зависимость напряжения от скорости (2.22В*об/с), внутреннее сопротивление (2.5Ом) и вентиляторные потери (механические на трение и перемешивание воздуха).

Оптимальное передаточное число мультипликатора планировалось 4, но из-за желания выполнить его компактно в одну ступень, остановился на 3.33. (Хотя и 4 пробовал). Шестерни нарезал косозубые, меньше шумят. Картер сделать не получилось, хотя для серии это, наверно, нужно. Мазать пару раз в месяц солидолом — несолидно.

Поворотный механизм — свободный ход на резьбе. Угол поворота после 2 — 3 оборотов ограничивался упругостью кабеля. Это оказалось самым простым и надежным решением. Головка вращается на длинной резьбе по полудюймовой трубе через муфту. Конечно, небольшой люфт в этом месте есть. Первоначально муфта делалась длиннее (60 — 70мм) и для облегчения хода на резьбе делалась проточка, оставлялись только верхние и нижние витки ( по 2 — 2.5 нитки). Потом оказалось, что люфт не так уж и страшен и узел был упрощен.

Кабель от генератора пропускался в отрезок вертикальной трубы (что-то около 500мм) и выходил через тройник в месте крепления головки к мачте. Упругости полуметрового толстого отрезка кабеля и хватало, чтобы не давать головке поворачиваться в горизонтальной плоскости более, чем на 1.5 — 2 оборота.

Пробовал и безхвостовой вариант, с набегом потока на турбину сзади, но все-таки остановился на классике — с хвостовым флюгером приблизительно 200х400мм, вынесенным на 70-сантиметровом отрезке полудюймовой трубы. Хвостовая труба уравновешивает генераторную головку в горизонтальной плоскости. Вся конструкция закрыта пластиковой канализационной трубой 100(106) мм. Сзади генератора — вертикальный узел поворота и 400мм отрезок полудюймовой трубы для крепления к мачте стандартной муфтой. Там же расположены выходные клеммы генератора. Провод снижения идет далее по мачте снаружи, хотя, можно до самой земли провести его в трубе.

Кожухом отлично работал отрезок канализационной пластиковой трубы 100 ( 106?) мм. Стопорился одним саморезом снизу. Впереди и сзади кожух был открытым. В приблизительно 8 — 10мм зазор меж кожухом и передним обтекателем заходил воздух для охлаждения генератора, сзади кожух нависал над креплением хвостовой балки на 20 — 25мм, чтобы вода на резьбу не капала.

Хвост на трубе полдюйма пластиковой с хвостовой лопастью ( приблизительно 200х400мм) утерян. Стыковался с небольшим грузиком и регулировался по длине, чтобы уравновесить головку на мачте в целом.

При массе генератора 2.5кг вся головка без турбины имеет массу порядка 5кг. Мне показалось, что это неплохой результат.

Особо стоит упомянуть турбину. Пожалуй, технологически самый непростой узел. Вся попавшая под руки литература была написана людьми совершенно далекими от аэродинамики. Большинство советчиков приводили популярные авиационные профили CLARK Y, BC2 и прочее. Методы расчета самолетных винтов и больших турбин совершенно не годились для маленькой тихоходной турбины, ориентированной на работу при слабых и средних ветрах (3-6м/с). Стандартная же технология изготовления лопастей тоже была достаточно трудоемка и , главное, не гарантировала высокой точности и повторяемости профиля.

Что касаемо профиля, то при данных числах Рейнольдса 40 000 — 60 000 самым лучшим оказался профиль типа Купфер, Гетинген 420 и тому подобное. Это знают авиамоделисты. Грубо говоря, это просто дужка, профиль крыла «Фармана» или «Ньюпора» времен первой мировой. При слабых ветрах он дает момент, почти в 1.5 раза больше, чем традиционные, каплевидные. При больших скоростях начинается срыв потока и турбина отчасти саморегулируется .

Профиль потянул за собой и технологию.

Выстругивалась по теоретическому чертежу и лекалам болванка с поверхностью нижней части лопасти. Далее на нее через слой полиэтилена накладывались слои дубового шпона на клею. У комля до 10, у конца — 3 — 4 слоя . Весь пирог тщательно уматывался резиновой лентой и оставлялся на сутки — двое.

Читать еще:  Громко работает двигатель а ауди 100

После схватывания клея, полуфабрикат лопасти снимался с болванки и сравнительно просто дорабатывался в концевой части и по кромкам шлифовкой. В конце, если требовалась долговечность, все это можно еще оклеить одним слоем стеклоткани на эпоксидке.

На снимке справа — болванка для выклейки лопастей. К ней плотно приматывается резиновой лентой проклеенный пакет дубового шпона. У комля 8 — 10 слоев, у самого конца лопасти 3 — 4. Потом ступенчатость слоев убирается шлифовкой и подшлифовываются кромки. Ну, и форма в плане корректируется по шаблону. Лопасти получаются легкими, жесткими и достаточно одинаковыми, легко балансируются. Впрочем, дуб — слишком серьезно. Можно вполне и что-то полегче. Вообще я без ума от липы. Ну, и оклеить это стеклотканью тоже не мешает, если нужна долговечность.

Слева лежат две оклееные стеклопластиком цельноструганные лопасти из липы от другой, более ранней модели с заклеенными кулачками механизма изменения шага винта. При всей неказистости 2000об/мин как-то вполне выдержали..

Один сезон выдержит и тщательно прогрунтованная и выкрашенная ПФ115 деревяшка. После зимнего хранения в неотапливаемом помещении особого коробления не отмечено. Но хранить турбину нужно подвешенной за ось. Ставить к стене на лопасть — нельзя.

Турбина одевалась на резьбе на вал и сама докручивалась до упора.

Все это в сборе устанавливалось на 5-метровой высоте на мачте из отрезков труб полдюйма, три четверти, дюйм, соединенных муфтами-переходниками. Мачта имела поворотное крепление у земли и четырехтросовую одноярусную систему растяжек из капронового шнура порядка 5мм. Такая конструкция позволяет поднимать/опускать мачту одному человеку.

Нагрузкой служил 12- вольтовой щелочной аккумулятор 55Ач, подключенный просто через 10А диод. Плюс вольтметр и амперметр..

Разрабатывался замысловатый контроллер, как развитие и дополнение. Рабочее напряжение генератора для съема максимума мощности должно меняться. Наивыгоднейший в этом смысле режим — фиксированный ток при меняющемся напряжении. Работа же через диод просто на аккумулятор дает как раз, наоборот — относительно постоянное напряжение при меняющемся токе заряда.

И, пока контроллер периодически привозился, примерялся и увозился домой, обнаружилось, что без контроллера турбина имеет некоторые интересные качества.

Запуск очень легкий, при менее 3м/c. Далее, турбина быстро набирает обороты до начала зарядки ( порядка 13 — 14В). После этого рост оборотов идет очень медленно, растет только момент на валу турбины и зарядный ток. Растут, конечно, и потери в самом генераторе и проводах снижения. Но генератор на сильном ветру эффективно охлаждается самим ветром через специально предусмотренные каналы. Характерно, что шумит турбина при разгоне, как только появляется зарядный ток, шум резко уменьшается. В общем, шумит довольно слабо. Когда спишь на даче при сильном ветре, вполне маскируется шумом деревьев, если не знаешь, что турбина установлена.

Я очень опасался, что во время какого-нибудь шквала генератор просто сгорит. Потом посчитал все возможные потери и пришел к выводу, что при теплоемкости конструкции ему нужно минут сорок, чтобы нагреться просто, как болванка, до градусов 70 — 80.

Ветряк все лето проработал под присмотром. оставлять его нельзя было из-за нравов нашего народа и еще: я опять-таки боялся шквала, бури. Однажды, ветер поднялся до 30 — 35м/c. Точного анемометра под руками не было, но я тогда уже прекрасно ориентировался по самой турбине. Достаточно однажды сделать 2 — 3 замера напряжения на эталонную нагрузку по анемометру и сделать таблицу — ветряк сам себе анемометр. Турбина давала 900об/мин , генератор выдавал порядка 150 — 170Вт при 5 — 7А ( половина мощности пропадала в слишком тонких проводах снижения порядка 20м) мачту и меня самого ветер при порывах шатал. Я опасался, что все это разлетится вдребезги, но испытания есть испытания.

Я раз десять уверенно останавливал турбину «на полном скаку», замыкая выход генератора накоротко. Ток при этом падал до 2 — 3А и обороты до 1 — 2 в с. Потом, все-таки где-то срезало шплинт и все это засвистело вразнос, пришлось срочно мачту опускать.

Основной вывод из этого эксперимента — маломощную турбину можно уверенно стопорить генератором при сильном ветре. Дополнительные тормоза не нужны. Это потом легко поясняется и в теории.

Я опустил тут многие эксперименты. Работал два сезона плотно. Опробовал и Савониусы, и вертикальные лопасти и еще несколько конструкций. Турбины от 2 до 12 лопастей, автоматы увода из-под ветра и прочее. Делал и генератор на постоянных магнитах, делал сервопривод изменяемого шага лопастей турбины и прочее. Не успел только однолопастник построить.

Могу сказать с уверенностью

1. Ветряк — весьма дорогое удовольствие, если речь идет не о игрушке. В моем случае это только освещение, небольшой электроинструмент (8 — 12 квт*ч в месяц). Для тех, кто на даче привык утюгом фуфайки гладить — бензоагрегат много дешевле.

2. Ничего лучше, чем классическая пропеллерная турбина, просчитанная еше в 20-е годы прошлого века в ветроэнергетике нет и быть не может. Изобретения тут делаются ради самих изобретений.

3. Ветряк — не дело одиночек. Ветряк — СИСТЕМА. Без глубокого понимания всех процессов, без знания основ механики, аэродинамики, электротехники — лучше не связываться с работой такой сложности. Это не для любителей, если хочется что-то в конце получить реально работающее.

Была попытка сделать более тихоходную турбину с двухступенчатым мультипликатором где-то 1 к 5. И бесхвостый вариант с ориентацией за счет парусности самой турбины («спиной к ветру», уравновешивающей трубой вперед).

Но мультипликатор оказался сложным, а турбина не хотела при слабом ветре разворачиваться. Я тут еще и винт изменяемого шага с сервоприводом реализовал (где-то ранее на снимке лопасти от него). Но сервопривод оказался слишком медлительным, чтобы оперативно реагировать на порывы ветра. И жужжал бесконечно. Потом, по мере продвижения понял, что для такой блохи это лишнее.

Работа была интересной, но пришлось уйти к реалиям. Коммерческий проект такой ВЭС еще нуждался в доработке, собственные ресурсы начинали таять, а тут подвернулось то, что мне было хорошо знакомо — импульсные источники. Вот этим сейчас и занимаюсь уже пятый год.

На сегодня, как мне представляется, мечты о ветряке, подогревающем пол и питающем утюги с водонагревателем пока нужно отставить. Это технически возможно, но стоит столько, что фантазия обывателя не выдерживает.

А вот такие маленькие для дачи могли бы иметь определенный успех. Это тоже недешево, но кому нужен свет, маленький телевизор, мобилка и ноутбук — вполне. Это порядка 10 — 15кВт.час в месяц.

Для питания болле мощной аппаратуры нужен уже более мощный генератор, например ветрогенератор с асинхронным двигателем или же установка на солнечных панелях.

Автор: Владимир Мищенко

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

  • Простой светодиодный пробник без батареек
  • Ветряная электростанция на базе асинхронного электродвигателя
  • Ветряная электростанция на базе асинхронного двигателя
  • Походная электростанция на постоянное напряжение 12В

В Интернете повсеместно обсуждается тема изготовления ветряка своими руками. Я могу помочь в приобретении коллекторных двигателей постоянного тока, который можно применить в качестве генератора для ветряка. Имеется один болгарского производства на 36 вольт, 1600 оборотов в минуту(3000 рублей), и один немецкого производства напряжением 48 вольт, 1200 оборотов в минуту(5000 рублей). Оба двигателя имеют мощные постоянные магниты. Фото и дополнительная информация по почте kir.ser83@yandex.ru

Делал похожий ветряной генератор на маленьком двигателе постоянного тока, через стабилизатор и простой фильтр с конденсаторами он у меня питал на даче китайский радиоприемник правда только когда был ветер.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector