Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

График зависимости мощности и крутящего момента от оборотов

График зависимости мощности и крутящего момента от оборотов

Опции темы
  • Подписаться на эту тему…
  • Поиск по теме

    График зависимости мощности и крутящего момента от оборотов

    Кто знает, где найти этот график для наших движек? JZ серия интересует в первую очередь )

    На турбомоторы в факе в гт ветке.

    Мне тоже интресено было бы его посмотреть.

    если бы. 🙂
    в каталоге есть максимальный крутящий момент, а мне нужно глянуть диапазон в зависимости от оборотов.

    посмотрим. правда характеристики турбо и атмо сильно отличаются

    Вот еще что интересно — есть ли во Владивостоке специальные стенды для замеров мощности и момента. Хочется узнать, сколько ипонских поней осталось у меня 🙂

    Из каталога есть тока на турбо и Бемс

    а на простой жизет есть гденить?

    что за каталог, есть ссылка?

    и чо когда линии пересекаются происходит?

    Как говорил один мой препод: апроксимируйте товарищи

    Переход на сверхзвук 🙂

    У момента и мощности только обороты общая шкала.

    Основной график момент, мощность есть момент на обороты.

    А вот и во Владе народ пробивал тему Стенд измерения мощности.
    Но видимо все затухло.

    чета на бимсе странный график какой-то. при таком спаде момента после 4 тыщ, мощность растет почти так же как и до 4000, хотя такого быть не может, ибо мощность=момент*обороты

    Графики зависимости мощности и момента двигателя от оборотов

    В инструкциях к мотоциклам приводятся обороты коленчатого вала двигателя при максимальных мощности: и крутящем моменте. Почти в каждой новой модели их число выше, чем в предыдущей. Имеет ли это значение для практического вождения?» — спрашивает И. Абдураимов из Казани.

    О взаимосвязи основных данных двигателя просят рассказать также мотолюбители В. Сокоренко из Полтавы, К. Лапшин из Иванова и другие.

    Ответы на их вопросы содержатся в публикуемой статье инженера Э. В. КО-НОПА.

    Мотоциклисты со стажем хорошо помнят ветерана ИЖ—49, с которым, кстати говоря, многие его владельцы, особенно из сельской местности, упорно не желают расставаться до сих пор.

    В чем причина такой привязанности? А в том, что на этой машине почти по любым, самым скверным дорогам может ездить даже не очень опытный мотоциклист, тогда как не каждому удается столь же легко проехать там на более мощных «Юпитере» или «Планете». Попробуем разобраться в чем же тут дело. А для этого обратимся сначала к простейшей теории, без которой здесь не обойтись.

    Внешняя скоростная характеристика двигателя, то есть зависимость его мощности и крутящего момента от числа оборотов коленчатого вала (или, как сейчас говорят, от частоты его вращения), графически показана на рис. 1.

    1. График зависимости мощности (N, л. с.) и крутящего момента (Мкр, кГм) от частоты вращения коленчатого вала (п. об/мин) при полностью открытом дросселе (скоростная характеристика): Nрасп — располагаемая мощность: Мкр.раск — располагаемый крутящий момент; nMмакс — обороты максимального момента; nNмакс — обороты максимальной мощности.

    Мы видим, что мощность растет лишь при повышении оборотов до определенной величины nNмакс(режим максимальной мощности), а затем падает. Это объясняется тем, что при очень большой скорости вращения чрезмерно возрастают механические потери в двигателе, ухудшается работа его систем, наполнение цилиндров свежей смесью и т. д.

    Крутящий момент двигателя МКр (кГм) и его мощность N (л. с.) связаны зависимостью МКр = 716,2 N/n (n — частота вращения двигателя в об/мин).

    Мотоцикл снабжен коробкой перемены передач, которая позволяет в зависимости от условий движения изменять общее передаточное число от двигателя к ведущему колесу, а значит, и тяговое усилие на нем. На первой передаче при оборотах максимальной мощности мотоцикл развивает сравнительно небольшую скорость, но взамен водитель получает большой крутящий момент на заднем колесе и наибольшее тяговое усилие. Это позволяет легко трогаться с места, преодолевать крутые подъемы, тяжелые участки дороги.

    Высшая же передача обычно выбирается из расчета достижения максимальной скорости при некоторых средних условиях: она зависит от множества факторов, таких, как рост и вес водителя и пассажира, их посадка на мотоцикле и одежда, тип шин и давление в них, покрытие дороги.

    Для оценки характеристик мотоцикла удобно, зная общее передаточное число от двигателя к заднему колесу, вычислять крутящий момент, передаваемый к нему двигателем. На рис. 2 показана такая зависимость на выбранной нами (например, четвертой) передаче.

    Рис. 2. График зависимости крутящего момента, передаваемого на заднее колесо (располагаемого момента Мрасп) от частоты вращения коленчатого вала n и скорости мотоцикла V.

    С повышением скорости мотоцикла увеличиваются действующие на него силы сопротивления и создаваемый ими момент сопротивления на заднем колесе (или так называемый потребный момент). Это отражает соответствующая кривая Мсопр, которая поднимается более круто при повышении скорости. Кроме того, сопротивление движению растет при снижении давления в шинах, прямой посадке, установке чрезмерно большого ветрового щитка.

    Если сравнивать движение двух водителей на одинаковых мотоциклах, то больший момент сопротивления и более крутое его нарастание с повышением скорости отметим на мотоцикле с водителем большего роста и веса.

    Сопротивление на горизонтальном участке шоссе при безветрии показано кривой Мсопр1» а на участке с подъемом — кривой Мсопр2» проходящей в зависимости от угла подъема несколько выше. Встречный ветер изменяет вид кривой — она (МСОпр в) поднимается более круто.

    Максимальная скорость мотоцикла при тех или иных условиях устанавливается тогда, когда по мере роста оборотов двигателя момент сил сопротивления становится равен располагаемому моменту, то есть тому, которым располагает водитель.

    Из рис. 2 видно, например, что на горизонтальном участке шоссе при безветрии один и тот же водитель, не меняя посадки на мотоцикле, не может превысить скорость Vмакc (соответствует точке 1). Почему? Потому, что дальше момент сопротивления, продолжая увеличиваться, становится более располагаемого момента (двигатель, как принято говорить, «не тянет» машину быстрее). Но достаточно, например, водителю пригнуться, как сопротивление снизится (кривая опустится) и двигатель начнет «раскручиваться» уже до более высоких оборотов, увеличивая скорость мотоцикла.

    Для других названных условий максимальная скорость определена точками пересечения соответствующих кривых М сопр2 и Мсопр в с кривой располагаемого крутящего момента. Обороты, при которых крутящий момент достигает максимума, меньше оборотов максимальной мощности, причем, чем более «выпукла» кривая Nрасп, тем больше разность между ними.

    Более выпуклая, плавная форма кривых располагаемых мощности и крутящего момента характерна для мало форсированных, дорожных двигателей, а более «острая», пикообразная, с ярко выраженной вершиной — для сильно форсированных (рис. 3).

    Рис. 3. График крутящих моментов Мкр и мощности N дорожного и форсированного двигателей.

    Дело здесь в том, что при создании специальных форсированных двигателей для достижения максимума мощности все их системы вынужденно «настраивают» на определенный узкий диапазон высоких оборотов. В этом режиме выбранные размеры окон и каналов, фазы газораспределения, тип и размеры карбюратора, конструкция и размеры деталей системы впуска (воздухоочиститель, фильтр, патрубки) и выпуска, тип и характеристики свечей зажигания, система охлаждения действуют согласованно, все «сыграно», как в хорошем оркестре, для достижения наибольшего эффекта. Но на других, меньших оборотах в работе систем появляется разнобой, и характеристики двигателя, естественно, ухудшаются.

    Читать еще:  Что такое свободно поршневой двигатель внутреннего сгорания

    По этой причине на дорожных мотоциклах, предназначенных для повседневной эксплуатации рядовыми водителями малой и средней квалификации, применяются лишь умеренно форсированные двигатели, такие, как, например, все модели «ИЖ—Планета» (кроме «ИЖ—Планеты-спорт»), «ИЖ—Юпитер», «Восход», поставляемые к нам ЯВЫ.

    Разумеется, со временем понятие умеренной форсировки изменяется, и потому все современные дорожные двигатели намного мощнее своих одноклассников, вышедших на дороги 20— 30 лет тому назад.

    Как ведет себя двигатель, если при движении на максимальной скорости (запас мощности исчерпан) увеличивается нагрузка, например при подъеме. Посмотрим на рис. 2. Обороты двигателя были n1, на подъеме они, естественно, упадут до значения n2, а скорость снизится до V2. Крутящий момент двигателя на этих уменьшившихся оборотах больше, чем при максимальных, поэтому он и преодолеет возросшую нагрузку. Двигатель, как принято говорить, «приспособился» к новым условиям движения. Таким образом, правее точки 3 кривой крутящего момента (Мрасп) двигатель работает устойчиво, автоматически компенсируя повышение момента сопротивления вплоть до максимального значения, равного Мрасп. Теперь посмотрим, что происходит левее.

    После повышения момента сопротивления до значения, при котором обороты двигателя на полном «газе» упадут иже величины nMмакс дальнейшее движение в тех же условиях на выбранной передаче может оказаться невозможным. Например, если при попытке преодолеть на «Планете-2» крутой затяжной подъем скорость от максимальной упадет до 75—80 км/час, немедленно следует включить низшую передачу. Значит, угол подъема на этом участке дороги больше предельно допустимого для четвертой передачи, которому на рис. 2 соответствует кривая Мсопр3. Она не пересекает кривой располагаемого момента, а лишь касается ее в точке 4, находящейся левее точки 3, так как кривая момента сопротивления вблизи этих значений скоростей имеет некоторый наклон к горизонтальной оси.

    Точка 4, таким образом, делит кривую располагаемого крутящего момента на два принципиально важных участка: на правом двигатель может устойчиво работать, автоматически приспосабливаясь к случайным увеличениям момента сопротивления до максимума, а на левом двигатель работает неустойчиво, и здесь любое случайное повышение сил сопротивлений может привести к его остановке.

    Заметим, что кривые моментов сопротивления протекают более круто при больших значениях скоростей. На малых и средних скоростях (практически же на всех скоростях для мотоциклов с двигателями умеренной мощности) наклоном этих кривых к горизонтальной оси можно пренебречь и считать, что точки 3 и 4 совпадают. Отсюда — простое правило при движении машины с максимальными нагрузками на двигатель: включать ту передачу, при которой двигатель работает на оборотах более высоких, чем обороты максимального крутящего момента (nMмакс).

    До сих пор мы рассматривали условия движения при полной нагрузке. При нагрузках меньших, чем ограниченные кривой М расп (см. рис. 2), двигатель может нормально работать с оборотами значительно меньшими, чем nМмакс. горизонтальном участке шоссе при благоприятных погодных условиях на той же «ИЖ—Планете-2» можно ехать со скоростью около 35—40 км/час на четвертой передаче. Это близко к значениям минимальных оборотов nмин1 И скорости Vмин1 показанным на рис. 2. Разумеется, «опускаться» ниже этих значений при выбранных условиях на четвертой передаче нельзя.

    Таким образом, заштрихованный участок на рис. 2, ограниченный кривыми Мрасп и Мсопр1. полностью характеризует возможности мотоциклиста: минимальную и максимальную скорости на четвертой передаче, максимальный преодолеваемый угол подъема или максимально возможное ускорение при любых скоростях — от минимальной до максимальной.

    Понятно, что чем больше заштрихованная площадь, чем более «выпукла» кривая Мрасп , тем, в целом, динамичнее мотоцикл, поскольку тогда больше разность между располагаемым моментом и сопротивлением. Сравнивая эти данные у дорожного и форсированного двигателя, видим (рис. 3), что при оборотах ниже n1 и скоростях ниже V1 лучше разгоняться и преодолевать подъемы будет мотоцикл с дорожным двигателем. Но если обороты и скорость выше, то преимущество — у форсированного (считаем, что передаточные числа от двигателей к задним колесам у них одинаковы).

    Как поступать, чтобы быстро разогнать мотоцикл? Помимо того, что нужно давать «полный газ» и быстро переключать передачи, крайне важно делать это своевременно! Переключать передачи мгновенно могут разве что гонщики-шоссейники. Мотолюбителям же следует стремиться к тому, чтобы в момент перехода на следующую пере-дачу обороты двигателя были близки к оборотам максимального крутящего момента. Для этого нужно запомнить соответствующие значения скорости на каждой из передач, «почерпнув» их из технического описания мотора. Иногда «переходные» значения скорости заводы-изготовители отмечали непосредственно на шкалах спидометров (например, мотоциклов ЯВА и ЧЗ до 1962 г.). Как преждевременное, так и запоздалое переключение передач («недокрутка» или «перекрутка» двигателя) на быстроте разгона мотоцикла сказываются отрицательно.

    Вернемся же к «старине» ИЖ—49. Благодаря чему он так мил сердцу сельского мотоциклиста?

    На рис. 4 показаны кривые располагаемых крутящих моментов двигателей ИЖ—49 и «ИЖ—Планеты-2». Запомним, что общие передаточные числа от двигателей к задним колесам у них одни и те же, и это позволяет их легко сравнить.

    Рис. 4. График крутящих моментов двигателей ИЖ—49 и «Планеты-2».

    Крутящие моменты двигателей одинаковы при числе оборотов около 3100 в минуту, но при меньших значениях крутящий момент двигателя «Планеты» быстро падает, тогда как «нефсрсиро-ванный» ИЖ—49 даже при 2000 об/мин обеспечивает крутящий момент в 2 кГм!

    На этих мотоциклах 2000 об/мин соответствует скорость 16,5 км/час на первой передаче, но для безопасного движения по скользким, «раскисшим» проселкам нередко нужна скорость пешехода, на которой ИЖ—49 намного «тяговитее» «Плане-ты-2» — здесь ему практически нет равных.

    Что же заставляет конструкторов форсировать двигатели, и чем все-таки «Планета-2» или «Планета-3» лучше старенького ИЖ—49? Вспомним же, что было сказано ьыше об ускорении мотоцикла: оно определяется разностью располагаемого и потребного крутящих моментов, то есть запасом крутящего момента. А этот запас при скоростях выше 70—75 км/час больше у «Планеты-2», что очень важно, если учесть год от года растущие скорости движения по магистральным дорогам. На высоких скоростях современный мотоцикл гораздо динамичнее своего «дедушки», на нем легче выполнять обгоны, преодолевать подъемы.

    Намереваясь купить мотоцикл, будущий его владелец должен четко представлять, какая модель лучше подходит для условий его эксплуатации. Так, в местности с тяжелыми дорогами более форсированный «Юпитер» может оказаться менее универсальным и послушным, чем «Планета», и как бы он ни нравился, стоит подумать, не лучше ли более спокойный двигатель «Планеты». Это не значит, что «Юпитер» плох, но в конкретных условиях иногда будет невозможно использовать его преимущества. И знание отдельных элементов теории, о которых только что шла речь, позволит правильно оценить возможности машин разных моделей и более грамотно их эксплуатировать.

    Графики зависимости мощности и момента двигателя от оборотов

    Крутящий момент. Лошадиные силы. Мы так часто упоминаем эти слова,но знаем ли мы до конца их смысл? Я почти уверен,что многие толком и не представляют разницы между ними. А для начинающего тюнера это вообще надо знать как 2х2! Так что немного просвятимся в этом вопросе :»Что есть что и как это взаимодействует?»

    Читать еще:  Шум в моторе при запуске двигателя

    Какую мощность развивает конь в упряжке? Странно, но средняя лошадь выдает при длительной работе только 0,8 л.с.; во всяком случае, именно такой показатель закладывали (и закладывают) обычно в инженерные и экономические расчеты по гужевому транспорту и пр. Считается также, что мужчина средних лет и обычной физической подготовки развивает (опять же при длительной работе) около 0,1 л.с. Немного, но и человек, и лошадь способны напрячься и несколько секунд выдавать гораздо больше – в разы. Конь вытаскивает телегу, застрявшую в разбитой колее, а моторчик внутреннего сгорания мощностью в 2 (две!) л.с. просто глохнет. Крутящего момента не хватило…

    Так что же такое крутящий момент и как он связан с мощностью двигателя? Вспомните среднюю школу: мощность определяется произведением силы на скорость (с какими-то коэффициентами в зависимости от единиц измерения) – для поступательного движения. Допустим, тянете вы груз с усилием в 12 кг и со скоростью 1 м/сек. (3,6 км/ч); тогда ваша мощность – 12 кгм/сек. То есть, 0,16 л.с.[Европейская (парижская) лошадиная сила считается 75 кгм/сек. Англо-американская практика вся запутана футами и фунтами, так что британская лошадиная сила (bhp) равна 1,0139 л.с. по «континентальному» счету.]; неплохо. Космический ракетный двигатель развивает тягу в 100 т при скорости 12 км/сек., значит, его мощность – 16 млн л.с.!

    Или же мощность определяется произведением крутящего момента [В свою очередь крутящий момент (он имеет смысл при вращательном движении) равен произведению силы на плечо ее действия. Когда к рычагу плечом в 1 м прилагается усилие в 10 кг (перпендикулярно плечу!), то тем самым создается крутящий момент в 10 кгм. Или в 98 Нм – кому как нравится.] на частоту вращения вала – для вращательного движения. Вот и все, остальное – арифметика. Если на валу мотора при 6000 мин-1 (в просторечии оборотов в минуту) замерен крутящий момент в 10 килограммометров, то его мощность равна 83,775 л.с. Или 61,6 кВт – в других единицах измерения [Один кВт равен 1,36 «континентальной» л.с. – даже в Африке.]. Причем неважно, о каком именно двигателе идет речь – о паровой машине, газовой турбине, поршневом д.в.с. или электромоторе; арифметике без разницы.


    Момент силы F на плече R; крутящий момент равен F x R

    И что же нам,DSMерам нужно? – мощность двигателя или его крутящий момент? Вот притча: вынесли вы на рынок картошку и хотите сбыть ее по 35 руб. за кг. Вроде как главное для вас – хорошая цена. Продали пару кило – по 35, а больше не берут; дорого. Тут-то и выясняется, что для вас важна не столько цена – за кг, – сколько общая выручка от продажи 2 центнеров картошки.

    Так и с моторами: нередко автомобилисты заявляют, что для них главное – момент, тяга, а мощность – дело десятое. Ровно наоборот – как в старом анекдоте: дай нам, Господи, мощность, а крутящий момент мы уж как-нибудь сами…

    Пусть микролитражный моторчик развивает 10 л.с. при 6 тыс. оборотов. То есть, крутящий момент на его маховике – 1,2 кгм (11,7 Нм). Вам нужно 100 Нм? Ради Бога: ставим понижающий редуктор (с передаточным числом 8,55), – и вот вам 100 Нм на выходном валу [Забудем пока о (неизбежных) потерях мощности в редукторе.]. Причем мощность – за вычетом потерь – остается, естественно, той же. Хотите 1000 Нм? Пожалуйста, возьмите редуктор с передаточным числом 85,5; вопрос подбора шестеренных пар…

    Но! При моменте в 100 Нм на выходном валу редуктора его обороты уже не 6000 мин, а только 700 с небольшим. Золотое правило механики: выигрывая в крутящем моменте (в силе), проигрываем в частоте вращения (в скорости). А 1000 Нм вы получите и вовсе при 70 мин-1; слишком медленно. Так вы хотите и крутящий момент, и обороты! И рыбку съесть, и не поцарапаться. Вам нужно продать по 35 руб. не 2-3 кг картошки, а много. Так и скажите: для меня главное – выручка. Для меня главное – мощность двигателя.

    Допустим, катите вы на своём эклипсе по ровной дороге с усовершенствованным покрытием; скорость постоянная – 100 км/ч. Тяга от двигателя в пятнах контакта ведущих колес с ходовой поверхностью в сумме как раз покрывает силы сопротивления воздуха и качения покрышек; для вашего авто (с его аэродинамикой, весом, шинами и давлением в них): положим 54 кг. То есть, крутящий момент на оси (при радиусе качения колес, скажем, 265 мм) равен 140 Нм, обороты колес – около 1000 мин, а расходуемая мощность – 1500 кгм/сек. или 20 л.с. С учетом потерь в трансмиссии – от маховика до пятна контакта – от мотора требуется мощность около 24 л.с.; легко.

    А чтобы ехать на две «сотни»? При удвоении скорости, силы сопротивления возрастают примерно вчетверо – по квадрату. Иначе говоря, потребная мощность увеличивается в 8 раз (4 х 2) – по кубу скорости! От двигателя нужны теперь 170-180 л.с. на маховике, поэтому далеко не каждый автомобиль способен набрать скорость в 200 км/ч.

    Это – при равномерном движении; а если вы хотите еще и разгоняться (или идти на подъем), необходима свободная мощность. Скажем, те же 22,5 л.с. на скорости 100 км/ч – плюс еще 10 л.с. на ускорение физического тела; II закон Ньютона. Или 50 л.с. – тогда разгон энергичнее.

    Как видите, и скорость автомобиля, и динамика его разгона зависят от мощности двигателя; как же ее поднять? Держать крутящий момент до высокой частоты вращения вала. Скажем, довести обороты того же микролитражного моторчика до 12 тыс. – при неизменном моменте в 11,7 Нм. Значит, его мощность увеличивается ровно вдвое – до 20 л.с. В общем, тут такое соотношение:

    P = 1/716,2 M x n,
    где P – мощность двигателя (л.с.) при n мин-1, M – его крутящий момент (кгм) при тех же оборотах. А 1/716,2 – просто коэффициент размерности.

    К сожалению, повышать частоту вращения вала поршневого двигателя очень непросто: силы инерции, нагрузки, трение. Ведь если раскрутить мотор от 6000 до 12000об.мин, то силы инерции, которые нагружают детали конструкции, возрастают вчетверо. Нелинейно – по квадрату оборотов. И когда 2,4-литровые «восьмерки» в Формуле 1 развивают максимальную мощность при 19500 мин, то силы инерции при такой частоте выше, чем при 6 тыс. оборотов, вовсе не в 3,25 раза. А в 3,25 х 3,25 = 10,5 раз! Внутреннее трение нарастает еще быстрее (от 6 до 19,5 тыс. раз в 35); к тому же ухудшается наполнение цилиндров топливовоздушной смесью – и крутящий момент неотвратимо падает. Поэтому у каждого двигателя есть точка перегиба на кривой мощности по частоте вращения вала. У каждого своя, но после точки перегиба мощность по оборотам уже не повышается, а наоборот – падает. Не говоря уже об опасности перекрутить мотор и разрушить его стремительно нарастающими силами инерции.

    Есть и другой путь: увеличивать крутящий момент. Тут главный прием – наддув: прокачивайте через ваш мотор вдвое больше воздуха (и соответственно горючего), и крутящий момент повысится, грубо говоря, в 1,5 раза – при тех же оборотах. И всего делов. Правда, нарастают тепловые нагрузки, возникают другие головные боли…но это уже другая история.

    Читать еще:  Что такое процесс в автомобильном двигателе

    Вы нередко видите графики крутящего момента и мощности двигателей по оборотам – так называемая внешняя скоростная (внешняя – потому что при полном «газе», а скоростная – поскольку по скорости вращения вала) характеристика. Так вот, вам достаточно видеть одну из кривых – либо момента, либо мощности; все равно. Другая восстанавливается из первой – и наоборот. Их приводят обе просто для удобства, – чтобы вам не заниматься сложнейшими арифметическими расчетами


    (синий график- момент, красный — лошадиные силы. График нашего соклубника Neo )
    Скоростная характеристика бензиновой «четвёрки» Eclipse: наибольший крутящий момент при 4800 мин-1, влево он уменьшается. А ниже 1000 оборотов лучше вообще не опускаться.

    То есть, связь между крутящим моментом, оборотами вала и мощностью двигателя однозначная – как между длиной основания треугольника, его высотой и площадью. Независимо от того, прямоугольный он, косоугольный и какого цвета.

    Скоростная характеристика тягового электромотора,типо как у гибридного Lexus RX400h: наибольший крутящий момент при 0 оборотов!

    И забавно, когда фирменный пресс-релиз прокалывается по простейшему правилу, – скажем, на web-сайте новоявленной калифорнийской компании DiMora Motorcar. По проекту ультра-люкс-седана Natalia, максимальная мощность 16-цилиндрового(!) мотора Volcano превышает 1200 л.с. Наибольший крутящий момент – 1220 Нм (900 футо-фунтов); однако тут не сходится. По сведениям от DiMora же, «отсечка» срабатывает на 6500 мин-1; значит, максимальная мощность достигается при 6000-6250. Но тогда наибольший момент ну никак не меньше 1400 Нм, а вернее все 1500. Арифметика: 2 х 2 = 4 и в солнечной Калифорнии.

    Эластичность двигателя

    Взгляните еще раз на кривую крутящего момента: она дает ключевую характеристику двигателя – его эластичность. Надо сказать, у автомобильных д.в.с. кривая неблагоприятная – то ли дело у газовой турбины, паровой машины, электромотора. Они выдают наибольший крутящий момент при низких оборотах – и даже при полной остановке вала. То есть, как лошадь: замедляют ход, напрягаются – и вытаскивают повозку. А попробуйте остановить вал Эклипсовской «четверки» или 12-цилиндрового двигателя Rolls-Royce – они попросту заглохнут.

    График крутящего момента у обычного д.в.с. левее 1000об мин обычно и не рисуют; он не способен работать на оборотах ниже «холостого хода». Тогда как у электромотора кривая поднимается к 0 оборотов – примерно по гиперболе; исключительная эластичность. При увеличении нагрузки (крутой подъем и т.п.) электромотор теряет обороты – и увеличивает крутящий момент; сопротивляется до упора! А д.в.с. при падении частоты вращения (ниже «пиковых» по крутящему моменту) сопротивляется все слабее – и в конце концов останавливается. Две большие разницы, как говорят в Одессе.

    Отсюда, кстати, идея «гибридных» бензин-электрических силовых агрегатов: тяговый э–мотор принимает на себя нагрузку именно там, где д.в.с. беспомощен. На самых «низах»; а обычно автомобильный двигатель выдает наибольший крутящий момент где-то при промежуточных частотах вращения вала. Причем у «остро» настроенного мотора пик момента сдвинут к высоким оборотам, а при низких он тянет слабо. Тогда и говорят о выраженном «подхвате»; ничего тут хорошего нет,тем более для стритовой машины.

    Так что же все-таки важнее – крутящий момент или мощность? Ответ: разумеется, нужен крутящий момент – в широком диапазоне оборотов! В том числе и при самой высокой частоте вращения вала, – то есть, мощность.
    Так что,перед тем,как вы задумаетесь о тюнинге своей машинки — задумайтесь,а что вы от неё хотите?Для каких целей? Ведь большая турбина даст больше мощи нам в итоге на верхах,но при этом диапазон крутящего момента по кривой оборотов сильно пропадает на низах и на средних оборотах.То есть большая турба позже спулится.Это касается и валов- чем больше угол -тем меньше мощи на низко-средних оборотах и больше на верхах. Вроде круто,да? Но вот для стритовой машины это катастрофа.Ведь для любителей погоцать по улочкам требуется более широкий диапазон крутящего момента,а не его огромный показатель в районе 6-9тыс об.Ведь не всякая улица + дорожный поток не позволят раскрутить мотор и не отпускать педаль газа. А отпустишь — потеряешь драгоценное время на новую раскрутку.

    Скорость,дорога,ночная трасса,мы не такие как все, мы — другая раса.
    Мощь оживает,люди смотрят нам вслед,Mitsubishi Eclipse — идеальный силуэт. (С)Я

    На графике изображена зависимость крутящего момента

    Здравствуйте, Дорогие друзья! Решения рассматриваемых ниже задач (это прототипы заданий из открытого банка заданий ЕГЭ по математике) я когда-то решил даже и не рассматривать на блоге. Это задачи на чтение графиков и диаграмм.

    Задания очень простые, решаются устно. Если вычисления и есть, то они минимальны. Условия представленных ниже заданий связаны с изменением характеристик работы автомобильного двигателя. Рассмотрим следующие типы заданий:

    26863. На графике изображена зависимость крутящего момента двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту, на оси ординат — крутящий момент в Н∙м. Скорость автомобиля (в км/ч) приближенно выражается формулой v=0,036n, где n — число оборотов двигателя в минуту. С какой наименьшей скоростью должен двигаться автомобиль, чтобы крутящий момент был не меньше 120 Н∙м? Ответ дайте в километрах в час.

    По графику видно, что крутящий момент будет не менее 120 Н∙м при числе оборотов от 2000 до 5000 в минуту:

    Для того чтобы найти наименьшую скорость, нужно в заданную формулу подставить наименьшее число оборотов:

    26864. На графике изображена зависимость крутящего момента автомобильного двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту. На оси ординат – крутящий момент в Н∙м. Чтобы автомобиль начал движение, крутящий момент должен быть не менее 60 Н∙м. Какое наименьшее число оборотов двигателя в минуту достаточно, чтобы автомобиль начал движение?

    Сказано, что автомобиль начнёт движение, если крутящий момент будет не менее 60 Н∙м.

    Данному значению на графике соответствует 2000 об/мин. Это и будет наименьшее число оборотов, при котором автомобиль начнёт движение.

    26866. На графике показан процесс разогрева двигателя легкового автомобиля. На оси абсцисс откладывается время в минутах, прошедшее от запуска двигателя, на оси ординат — температура двигателя в градусах Цельсия. Определите по графику, сколько минут двигатель нагревался от температуры 60 0 С до температуры 90 0 С.

    По графику видно, что до температуры 60 0 С двигатель нагрелся через 5 минут, до температуры 90 0 С через 8 минут.

    Значит от температуры 60 0 С до температуры 90 0 С двигатель грелся 3 минуты.

    Такие вот простые задачки. В будущем рассмотрим остальные – про среднемесячную температуру, осадки, рейтинги агентств, курсы цветных металлов и прочее.

    На этом всё! Успеха вам!

    С уважением, Александр Крутицких.

    — Дети, начертите квадрат со стороной десять сантиметров!
    — Марьиванна, что же это за квадрат такой — с одной стороной?!

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector