Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гравитационный двигатель: реальность, рождающаяся на наших глазах

Гравитационный двигатель: реальность, рождающаяся на наших глазах

Гравитационный двигатель долгое время рассматривался учеными как некая несбыточная мечта, которая красиво выглядит в теории, но в практическом плане неосуществима. Однако в последние годы, в связи с развитием отдельных направлений физической науки, данный вид perpetuum mobile стал постепенно приобретать вполне реальные очертания.

Начать следует с того, что гравитационный двигатель, пусть пока и в теоретическом виде, представляет собой специальное устройство, которое будет способствовать передвижению отдельных тел и объектов без отбрасывания массы. В общем виде речь идет о том, чтобы использовать этот вид материи, обладающий огромным запасом энергии, для совершения определенной работы. Последняя должна производиться за счет того, что тело будет перемещаться непосредственно под воздействием гравитационного поля.

Долгое время невозможность создания такого устройства, как гравитационный двигатель, связывалась с тем, что, по законам Ньютона, работа, которая совершается этим полем по отношению к замкнутому контуру, будет равна нулю, так как само это пространство характеризуется потенциальностью. Многое изменилось в связи с появлением и развитием положений общей теории относительности, согласно которой, этот процесс возможен, однако производиться он должен совершенно другими способами, чем мы привыкли в условиях Земли.

В частности, одним из наиболее перспективных следует признать вариант, в основе которого лежит магнитно-гравитационный двигатель. Уже сейчас науке известны конструкции Минато, Серла, Флойда, которые, несмотря на то, что обладают весьма существенными техническими недостатками, представляют собой весьма решительный шаг на пути к практическому использованию энергии гравитации. К их безусловным плюсам можно отнести экономичность и длительность деятельности.

Еще одним подтверждением того, что гравитационный двигатель, несмотря на всю свою фантастичность, вовсе не является какой-то несбыточной мечтой, является использование сходных схем в современной космонавтике. Так, для корректирования орбиты спутников и даже космических станций уже давно и успешно используются специальные гироскопы, которые позволяют осуществлять движение объектов без отбрасывания масс.

Фактически на сегодняшний день основным барьером, который стоит на пути того, чтобы гравитационный двигатель из фантазии превратился в реальность, является отсутствие необходимых механизмов для того, чтобы объединить усилия магнитных, химических и тепловых сил с механическим взаимодействием. При этом такая система должна быть закрытой, а запас топлива — достаточным для продолжительной работы.

Если исследования, касающиеся данного устройства, увенчаются успехом, то человечество получит не только современные авиационные двигатели с экономичным и экологически чистым режимом работы, но и преодолеет целый ряд ограничений по дальнейшему совершенствованию различных технических устройств.

Гравитационный двигатель

Использование: энергетика. Сущность изобретения: двигатель содержит массивный обод 2, который охватывает ступицу 3 и связан с размещенными на ступице объемными элементами в виде цилиндров 4 или сильфонов, способными изменять радиальные размеры под воздействием давления рабочего тела в виде газа или жидкости. Ступица 3 является одновременно золотником регулирующего устройства, содержащего перегородку 6, клапаны 16, входную 7 и выходную 8 полости, сообщающиеся соответственно с входным 9 и выходным 10 патрубками. При подачи рабочего тела через входной патрубок 9, входную полость 7 золотника и отверстия 14 в дне объемных элементов, связанных с входной полостью, обод перемещается в радиальном направлении, выводится из равновесного положения и под действием избыточной силы тяжести, воздействующей на одну сторону обода, приводится во вращение, которое передается на вал 1 двигателя. Неравновесность обода постоянно поддерживается при его вращении за счет опорожнения объемных элементов по другую сторону от оси 0 0 ротора двигателя. 4 з.п.ф-лы, 3 ил.

Изобретение относится к машиностроению, в частности к двигателям, а именно к гравитационным двигателям.

Известен гравитационный двигатель, содержащий ротор в виде водяного колеса, размещенного на опорах с возможностью свободного вращения на горизонтальном валу, на ободе которого установлены ковши, колесо имеет постоянную одностороннюю неуравновешенность относительно оси за счет заполнения ковшей водой с одной его стороны [1] Наиболее близким к предлагаемому по совокупности признаков является гравитационный двигатель, содержащий размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, и регулирующие устройства подачи рабочего тела в объемные элементы [2] Указанный двигатель имеет существенные недостатки, основные из которых сводятся к тому, что в нем содержится нагреватель с линзой большого размера, у которого в качестве источника энергии используются солнечные лучи, применяются резервуары с жидкой углекислотой, которая используется для охлаждения объемных элементов, выполненных в виде радиальных цилиндров. Все это обуславливает сложность устройства, зависимость работы двигателя от погодных условий и времени суток, приводит к низкой удельной мощности, приходящейся на массу двигателя, и малой экономичности, требует применения дорогостоящего рабочего тела в виде жидкой углекислоты, которая применяется как расходный материал.

Цель изобретения упростить устройство, повысить экономичность и надежность действия независимо от погодных условий и времени суток, увеличить удельную мощность.

Для этого в гравитационном двигателе, содержащем размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, и регулирующие устройства подачи рабочего тела в объемные элементы, груз выполнен в виде обода тороидальной формы с внутренней кольцевой опорной направляющей поверхностью, опирающейся на торцовые части объемных элементов, связанных с регулирующим устройством подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой, причем обод установлен эксцентрично относительно оси вращения ротора.

Объемные элементы выполнены в виде цилиндров с поршнями, штоки которых установлены с возможностью контактной связи с ободом.

Объемные элементы выполнены в виде сильфонов, торцовые части которых установлены с возможностью контактной связи с ободом.

Контактная связь каждого объемного элемента с внутренней кольцевой опорой направляющей поверхностью обода выполнена в виде ролика, соединенного с объемным элементом.

Регулирующее устройство подачи рабочего тела выполнено в виде цилиндрического золотника с входной и выходной полостями и установленного с возможностью вращения вместе со ступицей, при этом входная и выходная полости сообщены соответственно с входным и выходным патрубками, в цилиндрической стенке золотника выполнены отверстия, сообщающиеся с полостями объемных элементов, одна из торцовых стенок золотника жестко соединена с его цилиндрической стенкой, другая неподвижна и жестко соединена с входным и выходным патрубками, а золотник выполнен с возможностью вращения относительно стенки, на которой закреплена перегородка, образующая входную и выходную полости и несущая соприкасающиеся с цилиндрической стенкой клапаны, выполненные с возможностью попеременного совмещения отверстий в цилиндрической стенке вращающегося золотника с входной и выходной полостями.

На фиг. 1 и 2 показан предлагаемый гравитационный двигатель с объемными элементами в виде цилиндров, две проекции; на фиг.3 двигатель с объемными элементами в виде сильфонов.

Гравитационный двигатель (фиг.1 и 2) содержит установленный на горизонтальном валу 1 ротор, который состоит из груза в виде массивного обода 2 тороидальной формы, ступицы 3, объемных элементов в данном случае в виде цилиндров 4 с поршнями 5 и регулирующего устройства подачи рабочего тела, содержащего совмещенный со ступицей 3 золотник, внутренний объем которого при помощи неподвижной перегородки 6 разделен на водную 7 и выходную 8 полости, первая из которых сообщается с входным патрубком 9 для рабочего тела, а вторая с выходным патрубком 10. Цилиндры 4 установлены на ступице равномерно по окружности и радиально относительно оси О-О. Поршни 5 размещены в цилиндрах с возможностью свободного перемещения в радиальных направлениях и несут закрепленные с внешней стороны штоки 11, на которых как на торцовых частях объемных элементов с возможностью свободного вращения на осях размещены ролики 12, опирающиеся на внутреннюю кольцевую опорную направляющую поверхность обода 2 с возможностью возвратно-поступательного перемещения по дуге обода при вращении ротора. В дне цилиндров 4 и в цилиндрической стенке 13 золотника выполнены совмещенные друг с другом проточные отверстия 14, соединяющие полости цилиндров 4 с полостью золотника. Совмещенный со ступицей 3 и являющийся его составной частью золотник установлен на валу 1 двигателя, который прикреплен к торцовой стенке 3 золотника, жестко соединенный с цилиндрической его стенкой 13. Противоположная торцовая сторона полости золотника закрыта неподвижной торцовой стенкой 15 с возможностью вращения золотника относительно этой стенки, на которой закреплена неподвижная перегородка 6, образующая указанные выше входную 7 и выходную 8 полости золотника. Зазор между неподвижной торцовой стенкой 15 и цилиндрической стенкой 13 золотника имеет уплотнение в виде сальника. Неподвижная торцовая стенка 15 имеет два отверстия, одно из которых совмещено с входным 9, а другое с выходным 10 патрубками, прикрепленными к этой стенке и сообщающимися соответственно с входной 7 и выходной 8 полостями золотника. На сторонах перегородки 6 золотника, соприкасающихся с цилиндрической стенкой 13 золотника, установлены клапаны 16, которые обеспечивают попеременное перекрытие отверстий 14 в дне цилиндров при вращении золотника и попеременное совмещение отверстий в цилиндрической стенке золотника с входной и выходной полостями. Каждая из двух полостей золотника сообщается соответственно или с входным 9, или с выходным 10 патрубками. Золотник 3 с его входной 7 и выходной 8 полостями, цилиндрической стенкой 13 с отверстиями 14, перегородка 6 и клапаны 16 в совокупности составляют регулирующее устройство подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой. Ротор двигателя установлен на опорах 17 и основании 18 эксцентрично относительно оси вращения О-О.

Частный случай выполнения гравитационного двигателя (фиг.3) отличается от приведенного выше только тем, что объемные элементы у него выполнены в виде эластичных емкостей, например сильфонов 19, на внешних относительно оси оконечностях которых установлены ролики 12, которые могут устанавливаться в паре и опираться на внешнюю и внутреннюю поверхности обода.

Гравитационный двигатель работает следующим образом.

Рабочее тело в виде газа или жидкости, имеющее избыточное давление по сравнению с окружающей средой, подается по входному патрубку 9 в сообщающуюся с этим патрубком входную полость 7 золотника и через отверстия 14 поступает в полости тех цилиндров 4, отверстия которых сообщаются при данном положении с входной полостью 7 золотника. Под действием рабочего тела поршни 5 в цилиндрах 4 перемещаются в радиальном направлении от оси О-О ротора и через штоки 11 и ролики 12 увлекают в том же направлении массивный обод 2. Ротор при этом приводится в неравновесное положение, поскольку большая часть массы обода расположится по одну сторону от вертикали Б-Б, проходящей через ось О-О ротора. Вес Р1 меньшей части обода ротора по другую сторону от вертикали Б-Б при меньшем плече R1 его действия относительно оси О-О ротора создаст вращающий момент R1P1, величина которого меньше вращающего момента R2P2 большей части обода, перемещенного поршнями 5 в сторону от оси О-О. В совокупности на обод 2 будет воздействовать вращающий момент, равный разности этих двух вращающих моментов R2P2-R1P1. Под действием этого совокупного вращающего момента обод и ротор в целом приводятся во вращение (в данном случае на фиг.1 против часовой стрелки). В связи с неподвижностью перегородки 6 и установленных на ней клапанов 16 вращающиеся вместе с золотником цилиндры 4 через свои отверстия 14 попеременно сообщаются с входной 7 или выходной 8 полостями золотника, связанными соответственно с входным 9 или выходным 10 патрубками. За счет этого обеспечивается заполнение рабочим телом тех цилиндров, которые располагаются при вращении ротора с одной стороны от оси О-О, и освобождение их от рабочего тела при перемещении на другую сторону от оси. При этом поддерживается постоянная односторонняя неуравновешенность обода и обеспечивается его вращение под действием силы тяжести. При вращении ротора длина дуги обода между соседними роликами 12 циклически изменяется в связи с разным удалением различных участков обода от оси О-О вращения, обусловленного его эксцентрическим положением относительно этой оси. В связи с этим ролики совершают колебательные относительно среднего положения перемещения по ободу, перекатываясь по его внутренней кольцевой опорной направляющей поверхности.

Читать еще:  Что такое eci multi на двигателе

Двигатель, снабженный сильфонами (фиг.3) или иными эластичными объемными элементами, работает так же, как и описанный выше. Парное расположение роликов 12 с опорой на внешнюю и внутреннюю кольцевые опорные направляющие поверхности обода 2 исключает возможность ударов роликов об обод при их отходе от поверхности обода, что может иметь место при запуске двигателя.

1. ГРАВИТАЦИОННЫЙ ДВИГАТЕЛЬ, содержащий размещенный на опорах с возможностью свободного вращения на горизонтальном валу ротор, на ступице которого равномерно по окружности установлены объемные элементы, выполненные с возможностью возвратно-поступательного перемещения в радиальных направлениях и соединенные с грузами, регулирующее устройство подачи рабочего тела в объемные элементы, отличающийся тем, что груз выполнен в виде обода тороидальной формы с внутренней кольцевой опорной направляющей поверхностью, опирающейся на торцевые части объемных элементов, связанных с регулирующим устройством подачи рабочего тела от внешнего источника с избыточным давлением по сравнению с окружающей средой, причем обод установлен эксцентрично относительно оси вращения ротора.

2. Двигатель по п. 1, отличающийся тем, что объемные элементы выполнены в виде цилиндров с поршнями, установленными радиально на ступице равномерно по окружности, при этом поршни выполнены с возможностью контактной связи с ободом.

3. Двигатель по п. 1, отличающийся тем, что объемные элементы выполнены в виде сильфонов, установленных радиально на ступице равномерно по окружности, при этом их внешние оконечности выполнены с возможностью контактной связи с ободом.

4. Двигатель по п. 1, отличающийся тем, что контактная связь каждого объемного элемента с внутренней кольцевой опорной направляющей поверхностью обода выполнена в виде ролика, соединенного с объемным элементом.

5. Двигатель по п. 1, отличающийся тем, что регулирующее устройство подачи рабочего тела выполнено в виде цилиндрического золотника с входной и выходной полостями, установленного с возможностью вращения вместе со ступицей, при этом входная и выходная полости сообщены соответственно с входным и выходным патрубками, в цилиндрической стенке золотника выполнены отверстия, сообщающиеся с полостями объемных элементов, одна из торцевых стенок золотника жестко соединена с его цилиндрической стенкой, другая неподвижно и жестко соединена с входным и выходным патрубками, а золотник выполнен с возможностью вращения относительно стенки, на которой закреплена перегородка, образующая входную и выходную полости и несущая соприкасающиеся с цилиндрической стенкой клапаны, выполненные с возможностью попеременного совмещения отверстий в цилиндрической стенке вращающегося золотника с входной и выходной полостями.

Гравитационный двигатель

Гравитационный двигатель — устройство по преобразованию гравитационной энергии в механическую и электрическую.

НО, сделать изобретение иногда гораздо проще, чем потом его пристроить.

Хотя установку, которую создал пермский изобретатель Евгений Крылов, сам он «вечным двигателем» не называет.

Евгения еще со школьной скамьи привлекали физические науки, и, хотя с его дальнейшей деятельностью это было никак не связано, он много читал, размышлял на эту тему. Потом пришел черед литературы по экологии. И, как результат симбиоза двух направлений — физики и экологии, после долгих раздумий пришло озарение: способ преобразования сил гравитации в электроэнергию.

Находясь в командировке в одном из городов Пермской области, Крылов собрал установку, которая заработала сразу, как только он укрепил последнюю деталь. Евгений уехал домой, а когда через неделю вернулся обратно, установка исправно работала, лишь поскрипывал вращающийся вал. После этого он сразу уничтожил этот удивительный аппарат. Это случилось десять лет назад.

  • «Для подготовки простейшего опыта, доказывающего возможность преобразования энергии гравитации в электрическую энергию, мне достаточно одного часа, — говорит изобретатель. — А в течение суток при наличии материалов и двух-трех мастеров я могу создать работающий образец».
  • Кстати, установка задумывалась всего лишь как прибор для измерения плотности гравитационного поля Земли. Всякое физическое явление может изучаться только тогда, когда есть прибор, который его фиксирует. Например, электричество не использовали до тех пор, пока не появились приборы, которые его измеряли. Вот и я решил изучать гравитацию, придумал прибор, и назвал его гравитометр».

Следует отметить, что необходимые для устройства материалы широко распространены и очень дешевы. Аппарат экологически безопасен, поскольку в нем не используются вещества, опасные для здоровья человека. Даже разрушение оболочки не создает никаких последствий для окружающей среды. Установка легко автоматизируется, поэтому для ее эксплуатации требуются лишь специалисты, время от времени производящие смазку и регулировку.

Ее можно установить в любой точке Земного шара — на суше, на воде, в горах. Установка безопасна тем, что при нарушении определенных технологических режимов она прекращает работу сама собой. То есть, если создается аварийная ситуация, станция не будет опасна для окружающих.

  • Мощность установки определяется параметрами электрогенератора. При наличии небольшого генератора можно сделать электростанцию для отдельно взятого объекта — дома, дачи, теплицы; с помощью промышленных генераторов можно создать установки для снабжения электроэнергией целых регионов.
  • По расчетам изобретателя с одного кубического метра объема можно получать 1 киловатт электроэнергии. При габаритах установки более 100 кубометров коэффициент возрастает вдвое, и тогда с одного куба можно получать уже два киловатта. Стоимость установки соизмерима со стоимостью электрогенератора.

Ну, а как же устроен этот чудесный аппарат?

«Гравитометр — это закрытая со всех сторон емкость, — поясняет Крылов. — Грубо говоря, ящик размером метр на метр, к которому ничего не подводится. Из стенки ящика торчит вал, который непрерывно вращается. Подсоединив к валу редуктор, можно увеличить количество оборотов, необходимых для того, чтобы привести в действие электрогенератор. Аппарат начинает работать сам и сразу после окончания сборки».

В это нетрудно поверить. Возьмем простейший пример. Течет река. Течет сто лет, двести, тысячу, десять тысяч лет. С точки зрения человека, средняя продолжительность жизни которого составляет 70 лет, река — это самый что ни на есть «вечный двигатель».

Возьмем другой пример. Парусный корабль. Стоит только команде поднять паруса, да поставить их так, чтобы они поймали ветер, как судно тут же начинает движение. И нет нужды в веслах или дизеле для начального толчка. В принципе, судно может двигаться вечно, словно «Летучий голландец». Нужно лишь время от времени обновлять команду, да снаряжение корабля.

Теперь несложно понять ситуацию с гравитацией. Представим, что со всех сторон постоянно дует сильнейший гравитационный ветер, который прижимает нас с вами к Земле, не давая улететь в космическое пространство. Остается лишь придумать парус, способный поймать этот ветер, чтобы он закрутил-завертел нужные нам механизмы, как вода — мельничное колесо.

Вот таким людям, как Крылов, скорее всего и удалось поймать «гравитационный ветер».

  • А что же внутри, как устроен этот «парус»?»Внутри некий заполнитель и механическая часть. К сожалению, большего сказать не могу: устройство настолько просто, что каждый, у кого руки растут из нужного места, может его воспроизвести, — разводит руками изобретатель. — По этой причине я и разрушил действующий образец.
  • Кстати, эта установка — стационарного типа. Ее нельзя эксплуатировать в качестве движителя для автомобиля, поезда, самолета. Связано это с тем, что ее мощность прямо пропорциональна объему и потому она имеет большие габариты. Можно, конечно, поставить ее на теплоход, но наиболее рациональная область применения — стационарная электростанция».

Убедившись в работоспособности аппарата, Крылов понял, что изобрел для человечества, источник дармовой энергии, способный кардинально изменить жизнь каждого отдельного человека. С этого момента, начались его хождения по мукам, так свойственные отечественному изобретателю.

«Вся сложность этой установки в том, — сокрушается Крылов, — что она удивительно проста. Можно, всю энергопромышленость России и ближнего зарубежья перевести на новую технологию в течение двух лет. При этом на первом этапе можно ничего не менять, что стоит после генератора — подстанции, провода, проводку в квартирах.

Читать еще:  Двигатель асинхронный трехфазный сколько в нем меди

Следует лишь убрать котлы, топки, реакторы, поставив на их место экологически чистый агрегат. И все!

Переоборудование будет стоить мизерные деньги».

Почти сразу столкнувшись с враждебностью и бесперспективностью патентной системы (два года от подачи заявки до получения патента; высокая стоимость; недействительность патента во всем мире, кроме России), Крылов отказался от этой убийственной процедуры и начал поиск покупателя идеи или аппарата.

  • «Сначала мне предложили миллион рублей, — вспоминает Евгений. — Это было время, когда новая «Волга» стоила десять тысяч. За эти деньги у меня хотели купить установку и все авторские права. Я не поверил и отказался.
  • Кстати, многие при этом удивлялись, как это я, не имея специального образования, занимаюсь изобретательством в области гравитационной энергетики. На что я отвечал, что, во-первых, подскажите мне, где можно получить образование в области гравитационных технологий, а во-вторых, показывал результаты японских исследований, согласно которым девять из десяти изобретений мирового уровня делаются людьми, не имеющими никакого отношения к области проблемы.

Затем я заметил некую закономерность. Как только продвижение установки доходило до определенного уровня, все вдруг в мгновение ока начинало рушиться.

Однажды я все-таки домучил вопросами директора одной из фирм, занимавшейся продвижением моего проекта. Все шло прекрасно, и вдруг дело остановилось!

«Когда я дошел до весьма высокого уровня, — ответил он мне, — мне сказали, что, если я продолжу разрабатывать эту тему, меня просто-напросто уберут. Неужели ты не понимаешь, что ставишь под угрозу торговлю нефтью, вокруг которой крутятся огромные деньги».

Я понял, что в нашей стране у меня не найдется покупателя, и решил уехать за границу. В то же время на меня вышла одна фирма и предложила работу в США. Оказывается, в штате Иллинойс был создан специальный центр для, таких как, я.

Мне организовали вызов, начали оформлять документы и даже платить зарплату. В последний момент я отказался по личным причинам, о чем сейчас сожалею».

И что же, воз и ныне там?

«Да. После того, как пригрозили повесить меня за ноги, я на два года забросил эту тему, но жизнь «прижала» до такой степени, что решил «пробивать» установку. Используя, правда, другую схему, потому что в нашей стране мое изобретение никому не нужно, а мне нужны средства для существования.

  • Когда-то у меня была идея бесплатной передачи установки всем желающим. Предположим, «Гринпис» по своим каналам оповещает весь мир, что такого-то числа в таком-то месте производится свободная демонстрация такого-то изобретения. Я объясняю принцип ее действия, и она начинает стихийно распространяться по всему миру.
  • Сейчас ситуация несколько изменилась, поэтому я хочу продать идею, чтобы кто-то организовал производство, выполнил ее в «железе», наладил торговлю. Мне нужно найти людей, которые могут связаться с организациями типа ООН и предложить восьми наиболее богатым странам мира, которые фактически поделили между собой всю Землю, купить установку.
  • После того, как будут обеспечены гарантии оплаты, я устрою демонстрацию образца. Установку можно будет разобрать, «попробовать на зуб», убедиться, что я не обманываю, и только после этого произвести оплату.

Получив установку, страны-производители сами между собой должны договориться, кто, как, сколько и где будет их производить и распространять, чтобы не возникало конфликтных ситуаций, не было энергетических войн. Весь мир начнет эксплуатировать ее одновременно. С ее помощью он очень быстро избавится от грязи».

Ну, а как же месть нефтяных магнатов? Не страшно? «Может, это покажется смешным, но информацию об устройстве гравитометра я размножил, спрятал в тайниках и договорился с определенными людьми: если что-то со мной случится, они эту информацию выдадут «на гора» — опубликуют в СМИ, Интернет, то есть сделают ее доступной для всех. Начнется стихийное массовое производство установок. Зачем платить за энергию, если любое маломальское предприятие сможет производить ее

самостоятельно, никого об этом не спрашивая. В этом случае нефтяные и газовые магнаты однозначно останутся с носом. Хотят они этого или нет»

Все мои попытки найти автора изобретения, или какую-либо информацию о нем, не увенчались успехом. Через главного редактора газеты «На грани невозможного», где впервые была опубликована статья, я узнал домашний адрес Крылова. На мое письмо он не ответил. В телефонном справочном бюро города Перьми, мне сказали, что по данному адресу телефон отсутствует.

Где он находится сейчас и какова его судьба доподлинно неизвестно. Но поскольку «определенные люди» до сих пор не выложили информацию об изобретении, значит, автор жив и здоров, будем надеяться. Почему до сих пор нет не только реально действующего образца, но и никаких материалов по изобретению, не ясно. Хотя важнее другое — гравитацию можно заставить работать. Если есть сила ее можно преобразовать, трансформировать и так далее. Что и удалось Крылову. Но не только ему одному. Многие умы решали и решают этот вопрос!

  • На данный момент времени я располагаю материалами по гравитационному двигателю. Не буду вдаваться в подробности кто автор, хотя при вашем желании секрета делать не буду, не стану откровенничать о трудностях и обстоятельствах, при которых я получил полное право обладания ими, хоть и без права на авторство – мне это не нужно.
  • В процессе поиска материалов по ГД, много раз сталкивался с изобретателями, которые за свои чертежи просили баснословные суммы денег. Десятки, а чаще всего сотни тысяч «зеленых» и не только! Дабы не подтверждать выражение о бесплатности сыра в мышеловке, мною принято другое решение. Не смотря на то, что мне вся информация и мытарства по ней, обошлись в немаленькую сумму, я готов продать все за символическую плату.

Например, 1 000 российских рублей, все материалы, которые включают в себя: математическое доказательство возможности построения гравитационного двигателя, кинематический чертеж, а так же графики с таблицами, доказывающие возможность работоспособности данного устройства. Не нужно на отлично знать математику, чтобы разобраться в данных материалах.

Практикам достаточно одного основного чертежа, чтобы понять суть изобретения и принцип, на котором основывается работа гравитационного двигателя. Теоретикам будет интересно и полезно ознакомиться с доказательной базой в виде математических формул. А если соединить первых и вторых, то непременно получится положительный результат.

Теория без практики мертва, практика без теории слепа…

По заверениям автора данного изобретения, для изготовления ГД не требуется никаких дефицитных материалов. Главное требование – все детали должны быть изготовлены на высокоточных станках, потому как основу работоспособности устройства составляет правильный угол при расположении определенных деталей, а так же их сопряжение. В устройстве не требуется применение никаких жидкостей, кроме как смазки для подшипников трения, или качения. Длительность работоспособности устройства зависит от материалов, примененных при изготовлении и качественной смазки.

  • Пожелав самостоятельно, для личного использования, изготовить ГД и столкнувшись с определенными трудностями, в виде наличия, прежде всего, необходимого финансирования и станочно-инструментальной базы, достаточного количества свободного времени (уходит много на более насущные проблемы семьи, большая занятость по работе), мною было принято решение о прекращении работ в этом направлении.
  • Все желающие получить данные материалы, могут прислать на мой электронный адрес произвольную заявку на приобретение. Оплата производится через систему Веб Мани. На данный момент времени располагаю пока что, только такой формой взаиморасчетов.

Огромная просьба! Уважаемые господа! Если вы сомневаетесь в предоставленной информации, в какой бы то ни было ее части, пожалуйста, не пишите мне письма с нотациями и моралями! Если вы сомневаетесь в моей порядочности – тоже! Здесь своеобразная лотерея – купил материалы за копейки, сделал, заработало и неиссякаемый источник пожизненно «в кармане»!

И не только для себя, может быть. Но может и не заработать! Из-за неправильного понимания принципа работы ГД, хотя принцип как раз таки понять довольно просто, по крайней мере, в данной схеме, из-за неправильного, неточного изготовления деталей, или неправильной сборки. Здесь надо хорошо поработать головой и руками…

Гравитационный манёвр

Гравитацио́нный манёвр, реже пертурбацио́нный манёвр, — целенаправленное изменение траектории полёта космического аппарата под действием гравитационных полей небесных тел.

Впервые успешно осуществлён в 1959 году советской автоматической межпланетной станцией (АМС) Луна-3. Часто используется для разгона автоматических межпланетных станций, отправляемых к отдалённым объектам Солнечной системы и за её пределы, с целью экономии топлива и сокращения времени полёта. В таком применении известен также под названием «гравитационная праща» (от англ. gravitational slingshot ). Может использоваться и для замедления космического аппарата [⇨] , а в некоторых случаях наиболее важное значение имеет изменение направления его движения
[⇨] . Наиболее эффективны гравитационные манёвры у планет-гигантов, но нередко используются манёвры у Венеры, Земли, Марса и даже Луны.

Содержание

  • 1 Принцип совершения манёвра
  • 2 Роль гравитационных манёвров в исследовании космического пространства
  • 3 История
  • 4 Эффект Оберта
  • 5 Примеры использования
  • 6 См. также
  • 7 Комментарии
  • 8 Примечания
  • 9 Источники
    • 9.1 Литература
    • 9.2 Ссылки

Принцип совершения манёвра [ править | править код ]

Гравитационный манёвр подразумевает сближение совершающего орбитальный космический полёт аппарата с достаточно массивным небесным телом (планетой или спутником планеты), обращающимся вокруг того же центра масс (звезды или планеты, соответственно). Например, в окрестностях Земли можно выполнить гравитационный манёвр путём сближения с Луной, а при полётах в пределах Солнечной системы возможны гравитационные манёвры около обращающихся вокруг Солнца планет [1] .

В упрощённом представлении [Комм. 1] гравитационный манёвр около одной из планет Солнечной системы выглядит следующим образом: космический аппарат входит в сферу действия планеты [Комм. 2] , имея скорость vвх относительно планеты. Эта скорость определяется разностью [Комм. 3] скоростей движения аппарата Vвх и планеты Vпл относительно Солнца (см. треугольник 1 на иллюстрации). В планетоцентрической системе координат космический аппарат совершает облёт планеты по гиперболической траектории и со скоростью vвых покидает её сферу действия. При этом скорости vвх и vвых равны по модулю, но имеют разное направление, отличающееся на угол φ . После выхода аппарата из сферы действия планеты, его гелиоцентрическая скорость Vвых является суммой скоростей Vпл и vвых (см. треугольник 2). Обозначенная как ΔV разность скоростей Vвых и Vвх (см. фигуру 3) называется приращением скорости [Комм. 4] и является результатом гравитационного манёвра.

Читать еще:  Ваз на прогретом двигателе пропадает холостой ход

Приращение скорости зависит не от скорости орбитального движения планеты, а от относительной скорости сближения vвх , массы планеты и прицельной дальности [Комм. 5] b — чем ближе к планете пройдёт траектория космического аппарата, тем больше будет угол отклонения φ и значительнее приращение скорости. Минимальное расстояние ограничено необходимостью избегать контакта космического аппарата с планетой (включая её атмосферу, при наличии таковой).

Из законов небесной механики следует, что наибольшее возможное приращение скорости достигается при vвх равной круговой орбитальной скорости в точке наибольшего сближения с планетой. Угол отклонения φ при этом получается равным 60°. Максимально возможный модуль вектора приращения скорости при совершении гравитационных манёвров около некоторых тел Солнечной системы представлен в таблице (значения в км/с):

МеркурийВенераЗемляЛунаМарсЮпитерСатурнУранНептунПлутон
3,0057,3287,9101,6803,55542,7325,6215,1816,731,09

На практике достижимое приращение скорости зависит от цели совершаемого манёвра [6] .

Роль гравитационных манёвров в исследовании космического пространства [ править | править код ]

До практического освоения гравитационных манёвров исследование большей части Солнечной системы оставалось проблематичным. Скорость отлёта от Земли, достижимая с помощью химических ракет, позволяла совершать перелёты с выходом на орбиту искусственного спутника планеты назначения только до ближайших к Земле планет: Венеры и Марса. Для Меркурия, Юпитера и Сатурна было теоретически возможно лишь кратковременное посещение окрестностей планеты. Исследования более отдалённых регионов Солнечной системы и выход за её пределы с помощью химических ракет считались невозможными или непрактичными из-за слишком большого времени перелёта по энергоэффективным эллиптическим (гомановским) траекториям. Таким образом, исследование отдалённых от Земли регионов Солнечной системы в конце 50-х — начале 60-х годов XX века представлялось учёным задачей отдалённого будущего, требующей вначале разработки более эффективных реактивных двигателей (например, ядерных или электрических) [7] .

для замедления полёта

для ускорения полёта — «гравитационная праща»

Гравитационный манёвр около движущегося по орбите массивного небесного тела — планеты или крупного естественного спутника планеты — позволяет изменить кинетическую энергию космического аппарата без затрат топлива. Фактически, речь идёт о перераспределении кинетической энергии небесного тела и космического аппарата. Насколько изменяется кинетическая энергия аппарата, настолько же изменяется в обратную сторону кинетическая энергия движения небесного тела по его орбите. Поскольку масса искусственного космического аппарата исчезающе мала в сравнении с массой любого пригодного для гравитационного манёвра небесного тела (включая спутники планет), изменение орбиты этого тела оказывается пренебрежимо малым [Комм. 6] . Таким образом, гравитационный манёвр является «бесплатным» и эффективным способом разгона, торможения или изменения направления движения космических аппаратов в целях исследования всей Солнечной системы и выхода за её пределы при существующих ракетных технологиях.

История [ править | править код ]

Уже сотни лет назад астрономам были известны изменения траекторий и кинетической энергии комет при сближениях их с массивными телами, например, с Юпитером [9] . Идея о целенаправленном использовании притяжения крупных небесных тел для изменения направления и скорости полёта космических аппаратов выдвигалась в XX веке различными авторами, зачастую независимо друг от друга.

В 1938 году один из основоположников космонавтики Ю. В. Кондратюк передал историку авиации Б. Н. Воробьёву рукопись «Тем кто будет читать, чтобы строить» [10] . В ней высказывается идея об использовании при межпланетном перелёте тяготения спутников планет для дополнительного ускорения космического аппарата в начале и замедления его в конце пути [11] . Сам Кондратюк датировал рукопись 1918—19 годами, но по мнению Т. М. Мелькумова [Комм. 7] эта датировка сомнительна [13] .

Ф. А. Цандер подробно описал принципы изменения направления и скорости космического аппарата при облёте планет и их спутников в статье «Полёты на другие планеты (теория межпланетных путешествий)», датируемой 1924—25 годами и опубликованной в 1961 году [14] .

С 1930-х годов гравитационные манёвры стали встречаться в научной фантастике. Одним из примеров является рассказ Лестера дель Рея «Habit», впервые изданный в 1939 году. Герой рассказа выигрывает космическую гонку, использовав притяжение Юпитера для разворота своего корабля без потери скорости.

В 1954 году член Британского межпланетного общества математик Дерек Лауден [en] отметил, что ряд авторов предлагает уменьшать расход горючего при полётах на другие планеты с помощью притяжения различных тел Солнечной системы, но методы расчёта подобных манёвров недостаточно изучены [9] .

В 1956 году на седьмом Международном конгрессе астронавтики итальянский учёный Гаэтано Крокко предложил план беспосадочного пилотируемого полёта по траектории Земля — Марс — Венера — Земля, рассчитанной таким образом, чтобы отклонение космического корабля притяжением Венеры компенсировало отклонение, внесённое притяжением Марса при облёте его на небольшой дистанции. План полёта предусматривал только один разгон космического корабля реактивным двигателем, а время в пути составляло ровно год, что выгодно отличало его от полёта к Марсу по гомановским траекториям. Он получил известность как « Большое путешествие Крокко [it] » [15] .

В 1957 году аспирант Отделения прикладной математики Математического института имени В. А. Стеклова АН СССР (ОПМ МИАН) В. А. Егоров опубликовал статью «О некоторых задачах динамики полёта к Луне», которая получила мировое признание [16] . В состав этой работы входило исследование гравитационных манёвров около Луны для разгона или торможения космического аппарата. Выводы Егорова оказались близкими к выводам Цандера [17] .

На практике гравитационный манёвр был впервые осуществлён в 1959 году советской космической станцией «Луна-3», которая сделала снимки обратной стороны Луны. Изменение орбиты аппарата под действием притяжения Луны было рассчитано так, чтобы траектория его возвращения к Земле пролегала над Северным полушарием, в котором были сосредоточены советские наблюдательные станции [18] [19] . Расчёт манёвра основывался на исследовании ОПМ МИАН под руководством М. В. Келдыша, в котором использовались результаты работы Егорова [20] .

В 1961 году вопрос использования гравитационных манёвров в межпланетных полётах начал изучать аспирант Калифорнийского университета в Лос-Анджелесе Майкл Минович, проходивший интернатуру в Лаборатории реактивного движения (JPL) NASA. Для численного решения задачи трёх тел он использовал компьютер IBM 7090 с рекордным на то время быстродействием [21] . В 1963 году он опубликовал работу «The Determination and Characteristics of Ballistic Interplanetary Trajectories Under the Influence of Multiple Planetary Attractions», в которой рассматривалось использование гравитационных манёвров в межпланетных полётах, в том числе неоднократно в ходе одной миссии [22] .

Исследования Миновича не получили немедленного признания коллег по JPL. Его программа и результаты вычислений не были использованы непосредственно, но в 1964 году они послужили поводом для исследования практической возможности полёта к Меркурию с использованием гравитационного манёвра у Венеры [9] . В том же году они привлекли внимание другого интерна JPL, Гэри Флэндро [en] , изучавшего возможность использования гравитационных манёвров для экономии горючего и времени при осуществлении полётов автоматических зондов к внешним планетам Солнечной системы. До знакомства с работой Миновича он опирался на труды Гомана и Крокко, а также на изданную в 1962 году книгу Эрике Краффта [en] «Space Flight», в которую входило описание концепции гравитационных манёвров.

Флэндро приступил к самостоятельным расчётам «реалистичных профилей миссий», которые позволили бы использовать гравитационный манёвр около Юпитера для достижения отдалённых планет при известных значениях полезной нагрузки и гарантированного времени работы космического аппарата. Рассчитывая «окна запуска» он независимо от Миновича обнаружил, что в начале 1980-х годов будет иметь место возможность облёта Юпитера, Сатурна, Урана и Нептуна одним аппаратом, благодаря редкому (один раз в 176 лет) сближению этих планет на орбитах. Чтобы воспользоваться данной возможностью, космический аппарат должен был стартовать с Земли в конце 1970-х. Флэндро представил результаты своих исследований во внутреннем издании JPL в 1965 году, а в 1966 опубликовал статью «Fast Reconnaissance Missions to the Outer Solar System Utilizing Energy Derived from the Gravitational Field of Jupiter» [22] .

В 1965 году, во время совместной работы со Стэнли Кубриком над фильмом «2001: A Space Odyssey», английский писатель-фантаст Артур Кларк предложил изобразить гравитационный манёвр космического корабля «Дискавери-1» в поле тяготения Юпитера как средство достичь Сатурна. Эта идея не была реализована в кинофильме из-за сложности спецэффектов, необходимых для реалистичного изображения Сатурна, но вошла в одноимённый роман Кларка, изданный в 1968 году [23] .

В 1969 году NASA был разработан проект масштабной космической программы по исследованию внешних планет. В основу проекта легли наработки Флэндро, а название «Grand Tour» было позаимствовано у Крокко. Из-за высокой стоимости проект был реализован лишь частично в 1977 году в виде космической программы «Вояджер». Но ещё до запуска «Вояджеров» гравитационный манёвр торможения в поле тяготения Венеры для достижения Меркурия был успешно осуществлён в миссии «Маринер-10», стартовавшей в 1973 году [22] .

В дальнейшем гравитационные манёвры широко использовались в межпланетных миссиях различных космических агентств.

Эффект Оберта [ править | править код ]

Под гравитационным манёвром иногда понимается комбинированный способ ускорения космических аппаратов с использованием «эффекта Оберта». Суть данного способа заключается в том, что при выполнении гравитационного манёвра аппарат включает двигатель в окрестностях перицентра огибающей планету траектории, чтобы с максимальной эффективностью использовать энергию топлива для повышения кинетической энергии аппарата.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector