Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговые двигатели как найти начало обмотки

CNC-DESIGN

В корзине пусто!

Шаговые двигатели выбор и расчет основных параметров

Шаговые двигатели выбор и расчет основных параметров.
Шаговый двигатель — это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические движения. Вал шагового двигателя вращается с дискретным шагом, когда на него подаются управляющие импульсы в правильной последовательности. Вращение двигателей напрямую зависит от входящих импульсов, так же они напрямую управляют направлением и скоростью вращения вала двигателя.

Преимущества и недостатки шагового двигателя:
Преимущества:
— угол поворта двигателя пропорционален входным импульсам;
— фиксация положения при остановке током удержания;
— точное позиционирование и повторяемость движения, так как большинство шаговых двигателей имеют точность 3-5% шага, и эта ошибка не суммируется от одного шага к следующему;
— низкая инертность при запуске, остановке и реверсе;
— высокая надежность, поскольку в двигателе отсутствуют контактные щетки, поэтому срок службы двигателя в основном зависит от срока службы подшипников;
— реакция двигателя на цифровые входные импульсы обеспечивает управление без обратной связи, что делает систему более простой и, следовательно, более экономичной;
— можно достичь очень низкой скорости синхронного вращения с нагрузкой, которая напрямую связана с валом;
— можно реализовать широкий диапазон скоростей вращения, так как скорость пропорциональна частоте входных импульсов;
— шаговые двигатели дешевле серводвигателей.

Недостатки:
— может возникнуть явление резонанса, при некорректном расчете узла или системы управления;
— двигатель непрост вэксплуатации наочень высоких скоростях, 3000+ об/мин;
— сложность системы управления;
— падение мощности с ростом скорости вращения;
— отсутствие обратной связи;
— невысокая удельная мощность;
— низкая скорость вращения;
— шум.

Выбор шагового двигателя.
Шаговый двигатель можно использовать когда требуется контролируемое движение. Они могут использоваться в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизацию. Из-за присущих выше преимуществ, шаговые двигатели нашли свое место в различных устройствах: принтеры, плоттеры, лазерные резаки, гравировальные станки, устройства захвата и так далее.
При выборе шагового двигателя для вашего устройства необходимо учитывать несколько факторов:
Как двигатель будет связан с нагрузкой?
Какие скорость и ускорения необходимо реализовать?
Какой крутящий момент необходим для перемещения исполнительного механизма?
Какая степень точности требуется при позиционировании?

Количество полюсов (однополюсный/биполярный)
Обычно шаговые двигатели имеют две фазы, но также существуют трех- и пятифазные двигатели. Биполярный двигатель с двумя фазами имеет одну обмотку/фазу, а однополярный двигатель имеет одну обмотку с центральным отводом на фазу. Иногда шаговый двигатель называют четырехфазным двигателем, хотя он имеет только две фазы. Двигатели с двумя отдельными обмотками на фазу могут приводиться в двухполярный или однополярный режим. Желательно, чтобы количество проводов на двигателе соответствовало количеству контактов на драйвере, чтобы не заниматься различными ухищрениями при подключения.

Номинальный ток
Обычно указывается максимальный ток, который подается одновременно на обе обмотки. Максимальный ток через одну обмотку (который действительно имеет значение при использовании микрошагов) указывается достаточно редко. При подаче номинального тока на одну обмотку происходит нагрев двигателя, из-за этого обычно ограничивают ток двигателя не более 85% от номинального тока. Для достижения максимального крутящего момента двигателя без перегрева, необходимо выбрать двигатель с номинальным током не более чем на 25% выше, чем рекомендуемый максимальный ток привода шагового двигателя.

Крутящий момент
Выходной крутящий момент и мощность шагового двигателя зависят от размера двигателя, теплоотвода, рабочего цикла, обмотки двигателя и типа используемого привода. Если шаговый двигатель работает без нагрузки во всем диапазоне частот, одна или несколько точек собственных колебаний резонанса могут быть обнаружены либо по звуку, либо по датчикам вибрации. Полезный крутящий момент от шагового двигателя может быть резко уменьшен за счет резонансов. Работы на резонансных частотах следует избегать. Внешнее демпфирование, дополнительная инерция или применение микрошагов используются для уменьшения эффекта резонанса.

Удерживающий момент
Это максимальный крутящий момент, который может обеспечить двигатель, когда обе обмотки находятся под напряжением при полном токе. Крутящий момент пропорционален току (за исключением очень малых токов), поэтому, например, если вы установите драйверы на 85% от номинального тока двигателя, то максимальный крутящий момент будет 85% * 0,707 = 60% от указанного удерживающего момента.
Крутящий момент возникает, когда угол ротора отличается от идеального угла, который соответствует току в его обмотках. Когда шаговый двигатель ускоряется, возникает крутящий момент для преодоления собственной инерции ротора и массы нагрузки, приводимой в движении. Чтобы создать этот крутящий момент, угол ротора должен отставать от идеального угла.
Известно, что использование микрошага снижает крутящий момент. На самом деле это означает, что угол запаздывания равен углу, соответствующему одному микрошагу (поскольку вы хотите, чтобы положение было с точностью до одного микрошага), более высокое значение микрошага предполагает уменьшение угла, а значит и уменьшение крутящего момента. Крутящий момент на единицу угла (что действительно имеет значение) не уменьшается при увеличении микрошага. Иными словами, отправка импульса на двигатель на один микрошаг 1/16 приводит к точно таким же фазовым токам (и, следовательно, к тем же силам), что и к отправке двух 1/32 микрошагов или четырех 1/64 микрошагов и так далее.

Размер
Шаговые двигатели также классифицируются в соответствии с размерами корпуса, которые соответствуют размеру рамы двигателя. Например, шаговый двигатель NEMA11 имеет размер рамы приблизительно 1,1 дюйма (28 мм). Аналогично, шаговый двигатель NEMA23 имеет размер корпуса 2,3 дюйма (57 мм) и т. д. Однако длина корпуса может изменяться от двигателя к двигателю в рамках одной и той же классификации размеров, при этом крутящий момент двигателя с определенным размером рамы будет увеличиваться с увеличением длины корпуса.

— габарит рамы 20х20 мм;
— диапазон длин: 30-42 мм;
— крутящий момент: 0,18-0,3 кг*см.

— габарит рамы 28х28 мм;
— диапазон длин: 32-51 мм;
— крутящий момент: 0,43-0,9 кг*см.

— габарит рамы 35х35 мм;
— диапазон длин: 28 мм;
— крутящий момент: 1,0 кг*см.

— габарит рамы 39х39 мм;
— диапазон длин: 20-38 мм;
— крутящий момент: 0,65-2,0 кг*см.

— габарит рамы 42х42 мм;
— диапазон длин: 25-60 мм;
— крутящий момент: 1,7-6,5 кг*см.

— габарит рамы 56х56 мм;
— диапазон длин: 41-76 мм;
— крутящий момент: 2,88-18,9 кг*см.

— габарит рамы 86х86 мм;
— диапазон длин: 65-156мм;
— крутящий момент: 34-122 кг*см.

— габарит рамы 110х110 мм;
— диапазон длин: 99-201 мм;
— крутящий момент: 112-280 кг*см.

— габарит рамы 130х130 мм;
— диапазон длин: 165-270 мм;
— крутящий момент: 270-500 кг*см.

Угол шага.
Существует два распространенных угла шага: 0,9 и 1,8 градуса на полный шаг, что соответствует 400 и 200 шагам/оборот. Большинство устройств используют двигатели с шагом 1,8 град/шаг.
При заданной скорости вращения 0,9-градусный двигатель производит вдвое больше индуктивной обратной эдс, чем 1,8-градусный двигатель, из-за этого возможно будет необходимо использовать питание 24 В для достижения высоких скоростей с двигателями 0,9 градуса.
Для двигателей 0,9 градуса необходимо подавать шаговые импульсы драйвера с удвоенной скоростью по сравнению с двигателями 1,8 градуса. Если вы используете высокий микрошаг, тогда скорость может быть ограничена скоростью, с которой электроника может генерировать шаговые импульсы.

Читать еще:  Давление масла в двигателе opel corsa

Разрешение и точность позиционирования.
На разрешение и точность позиционирования системы шагового двигателя влияют несколько факторов: угол шага (длина полного шага шагового двигателя), выбранный режим движения (полный шаг, полшага или микрошаг) и скорость передачи. Это означает, что есть несколько различных комбинаций, которые можно использовать для получения желаемого разрешения, из-за этого проблема разрешения обычно может быть решена после того, как были определены размер двигателя и тип привода.

Самоиндукция .
Индуктивность двигателя влияет на скорость, с которой драйвер шагового двигателя может приводить двигатель в действие до падения крутящего момента. Если мы временно игнорируем обратную эдс из-за вращения, а номинальное напряжение двигателя намного меньше, чем напряжение питания привода, то максимальные обороты в секунду перед падением крутящего момента составляют:

оборотов_в_секунду=(2*напржение_БП)/(шагов_на оборот*3,14* индуктивность* ток)

Если двигатель приводит ремень GT2 через шкив, это дает максимальную скорость в мм/с как:

Например:
двигатель 1,8 град/шаг ( т. е. 200 шагов/об) с индуктивностью 4 мГн работает при 1,5, А при напряжении питания 12 В, и привод ремня GT2 с 20-зубчатым шкивом начинает терять крутящий момент со скоростью около 250 мм/с.
На практике крутящий момент начинает падать раньше, чем это из-за обратной эдс, вызванной движением, потому что не учитывается сопротивление обмоток. Моторы с низкой индуктивностью также имеют низкую ЭДС из-за вращения. Для достижения высоких скоростей, необходимо выбирать двигатели с низкой индуктивностью и высоким напряжением питания.

Сопротивление и номинальное напряжение
Это сопротивление на фазу и падение напряжения на каждой фазе, когда двигатель неподвижен, и фаза передает свой номинальный ток (который является результатом сопротивления и номинального тока). Это важно когда номинальное напряжение значительно ниже напряжения питания для шаговых драйверов.

Обратный ЭДС из-за вращения
Когда шаговый двигатель вращается, то создается обратная эдс. При идеальном нулевом угле запаздывания на 90 градусов не в фазе с напряжением возбуждения, а в фазе с обратной ЭДС из-за индуктивности. Когда двигатель выдает максимальный крутящий момент и находится на грани пропуска шага, он находится в фазе с током.
Обратный ЭДС из-за поворота обычно не указывается в спецификации, но мы можем оценить его по следующей формуле:

Формула предполагает, что удерживающий момент указан для обеих фаз, находящихся под напряжением при номинальном токе. Если это указано только с одной фазой под напряжением, замените 1,414 на 2.
Пример: рассмотрим 200-шаговый двигатель, приводящий каретку через шкив с 20 зубцами и ремень GT2. Это 40-миллиметровое движение за оборот. Для достижения скорости 200 мм/сек нам нужно 5 об/сек. Если мы используем двигатель с удерживающим моментом 0,55 Нм, когда обе фазы работают при 1,68, А, пиковая обратная эдс из-за вращения составляет

1,414 * 3,142 * 0,55 * 5 / 1,68 = 7,3 В.

Как вбрать необходимое напряжение питания
Если заранее известна необходимая скорость движения для вашего устройства, можно предварительно определить, какое напряжение питания вам потребуется для драйверов двигателя.
Пример: определим необходимую скорость движения. Для этого примера будем использовать 200 мм/сек, передача шкив 20 зубьев GT2.
Исходя из необходимой скорости движения, определим максимальную скорость ремня.
Прикинем обратную ЭДС от индуктивности:

где N — число полных шагов на оборот (200 для двигателей с 1,8 градусами или 400 для двигателей с 0,9 градусами).
Возьмем для примера двигателя со следующими параметрами: 0,9 градуса с индуктивностью 4,1 мГн, и токе 1А. Таким образом, обратная эдс из-за индуктивности составляет:

Вычислим обратную ЭДС из-за вращения по приведенной ранее формуле.
Двигатели для примера имеют номинальный ток 1,68А и момент удержания 0,44 Нм, поэтому результат равен:

Предпочтительно, чтобы напряжение питания драйвера составляло по меньшей мере сумму этих двух обратных эдс, плюс еще несколько вольт запаса. При использовании двух двигателей последовательно требуемое напряжение удваивается.

Алгоритм выбора шагового двигателя
1. Определение компонента механизма привода .
Определите механизм и необходимые входные данные, вариант механизма, приблизительные размеры, расстояния перемещения и время позиционирования.
2. Рассчитайте необходимое разрешение.
Найдите разрешение, необходимое для двигателя. Исходя из требуемого разрешения, определите, будет ли использоваться только двигатель или мотор-редуктор . Тем не менее, благодаря использованию технологии микрошагов, достичь требуемого разрешения стало гораздо легче.
3. Определите схему работы
Определите схему работы, которая соответствует требуемым данных. Рассчитайте значения ускорения (замедления) и скорость рабочего импульса, чтобы рассчитать момент ускорения.
4. Рассчитайте необходимый крутящий момент.
Рассчитайте момент нагрузки и момент ускорения и найдите требуемый момент, требуемый двигателем.
5. Выберите двигатель.
Сделайте предварительный выбор двигателя на основе требуемого крутящего момента. Определите используемый двигатель по характеристикам скорости и крутящего момента.
6. Проверьте выбранный двигатель.
Подтвердите скорость ускорения / замедления и коэффициент инерции.

Общие рекомендации:
— если не планируется использовать внешние драйверы шаговых двигателей, выбирайте двигатели с номинальным током не менее 1,2, А и не более 2,0 А.
— рассчитывайте на рабочий ток шагового двигателя 50-85% от номинального.
— размер:
Nema 17- самый популярный размер, используемый в домашних проектах.
Nema 23 необходимо использовать если не хватает крутящего момента от длинных двигателей Nema 17.
— старайтесь не использовать двигатели с номинальным напряжением (или произведением номинального тока и фазового сопротивления)> 4 В или индуктивности> 4 мГн.
— выборйте двигатель с 0,9 град/шаг, если необходима дополнительная точность позиционирования, для стандартных решений используйте двигатели 1,8 град/шаг.
— при использовании 0,9 градусных шаговых двигателей или двигателей с высоким крутящим моментом, необходимо применение блоков питания с напряжением 24 В, чтобы поддерживать крутящий момент на более высоких скоростях.

Как определить начало и конец обмоток электродвигателя: обзор методик

Часто возникают затруднения при подключении электродвигателя после ремонта. Далеко не все ремонтные организации маркируют начало и конец обмоток 3-х фазного двигателя. Завод изготовитель в клеммной колодке маркирует контакты буквами С1- С6. Эта маркировка принята в нашей стране. По международному стандарту используются буквы латинского алфавита. Отсутствие маркировки может спровоцировать выход из строя двигателя при включении в сеть. Чтобы этого не произошло, необходимо знать, как определить начало и конец обмоток электродвигателя. Об этом мы сейчас и расскажем читателям сайта Сам Электрик.

Следует отметить, что в данном случае электродвигатель можно представить как трансформатор. А это значит, что неважно, с какой стороны начало или конец обмотки. Главное, они не должны включаться встречно.

Существует несколько методов распознавания. Для этого необходимы приборы:

  • мультиметр или тестер;
  • понижающий трансформатор;
  • контрольная лампочка.
  • Метод определения с помощью тестера
  • Метод развернутого треугольника
  • Соединение звездой
  • Определение с помощью батарейки
  • Определение рабочей и пусковой обмоток двигателя на 220 Вольт
  • Двигатели постоянного тока

Метод определения с помощью тестера

Прежде чем начать работу, необходимо подготовить рабочее место. Соблюсти все правила электробезопасности и не забывать, что работа с электричеством требует предельной концентрации внимания и аккуратности. Выполним работу способом трансформации.

Работы выполняются в следующей последовательности:

  • С помощью тестера находим выводы обмоток и помечаем их кембриками, подписав, например, первая обмотка помечается С1-С4, вторая С2-С5, третья С3-С6.
  • Соединяем две обмотки последовательно. На них подается пониженное напряжение с трансформатора.
  • На третьей произведем замеры напряжения. При согласованном включении, тестер будет показывать некоторое напряжение. Величина зависит от уровня напряжения, поступающего с трансформатора. При встречном включении, тестер будет показывать минимальное значение напряжения.
  • Маркируем соответствующими образом обе обмотки.
  • Разбираем схему и соединяем третью обмотку с любой другой. Подаем напряжение от трансформатора и производим замеры. Схема показана на рисунке снизу. Однако, на схеме подается опасное напряжение 220 вольт. В нашем случае мы подаем пониженное напряжение с трансформатора.
  • По аналогии с предыдущими измерениями определяем начало и конец третьей обмотки. Маркируем.
  • После определения и маркировки проводов, можно соединять двигатель звездой или треугольником и подключать к сети. При этом двигатель не должен издавать повышенный шум и нагреваться. Если это происходит, вы ошиблись в определении начала и конца обмоток. Если все правильно подключено, двигатель работает ровно и не нагревается.
Читать еще:  Что представляет собой двигатель dohc

Понижающий трансформатор нужен для ограничения тока в обмотках. Можно обойтись без него, но для ограничения тока, последовательно катушкам включают контрольную лампочку небольшой мощности.

Не стоит рисковать, подавая 220 вольт на обмотки без ограничения тока. В этом случае велика вероятность выхода двигателя из строя. Проще говоря, можно «сжечь» обмотки.

Метод развернутого треугольника

Существует более простой метод определения обмоток при отсутствии маркировки. При подключении треугольником. Это так называемый метод развернутого треугольника. Для определения понадобятся приспособления, применяемые в первом случае.

Работу выполняют в следующей последовательности:

  • Мультиметром находят обмотки.
  • Маркируют в произвольном порядке.
  • Соединяют все три катушки последовательно.
  • Подают пониженное напряжение.
  • Производят замеры напряжения на обмотках. При правильном соединении, напряжение на обмотках должны совпадать. Т.е. U1=U2=U Если на одной из них значение отличается, концы этой обмотки следует поменять местами.
  • На этом проверка заканчивается. Двигатель можно монтировать на рабочее место.

На рисунке показана схема измерений методом треугольника.

Если отсутствует мультиметр, проверить напряжение можно с помощью лампы. Уровень свечения должен быть во всех случаях одинаков. Если на одной из обмоток он отличается, то провода катушки меняют местами.

Соединение звездой

Этот метод применяется в исключительных случаях. После того, как обмотки будут найдены, их соединяют звездой и кратковременно подключают к сети. Если провода соединены неправильно, двигатель начинает гудеть и греться.

После отключения переключают одну из обмоток и опять подключают к сети. Таких переключений может быть не более трех. Следует запомнить, включают двигатель кратковременно, не более 2 секунд. Если оставить включенным на большее время, двигатель наверняка выйдет из строя.

Определение с помощью батарейки

Для этого метода потребуется тестер и батарейка. Это наиболее простой способ. Методика поиска с помощью батарейки заключается в следующем:

  1. С помощью тестера находим катушки на асинхронном двигателе.
  2. К одной из них подключается прибор.
  3. К выводам другой подключаем кратковременно несколько раз батарейку. Если в момент подачи напряжения тестер показывает отрицательное значение, это говорит о встречном включении обмоток.
  4. Проверяем поочередно все катушки и маркируем их соответствующим образом.

Схема измерений показана на рисунке снизу.

Аналогичным образом можно проверить с помощью аккумулятора. Разница заключается в том, что вместо батарейки применяется аккумулятор.

Определение рабочей и пусковой обмоток двигателя на 220 Вольт

Часто возникает необходимость определения рабочей и пусковой обмотки в однофазном двигателе. Это происходит по причине утраты надписи или после ремонта.

У двигателя имеются четыре провода. Методика проверки заключается в следующем:

  • Визуально осматриваем провода. Если провода имеют разное сечение, то с меньшим сечением будет пусковая;
  • Однако, стоит перепроверить. Замеряем сопротивление. Обмотка, имеющая меньшее значение будет рабочей, а вторая пусковая.
  • Производим маркировку проводников.

Схема замеров показана на рисунке снизу.

При наличии обмоток с одинаковым сопротивлением, любую обмотку можно использовать как рабочую или пусковую. Направление вращение меняют заменой местами обмоток.

Часто встречаются однофазные электродвигатели с тремя проводами. В этом случае тестером замеряют сопротивления. Получаем значения, например, 52 Ом, 18 Ом и 34 Ома. Это значит, что обмотка, имеющая меньшее значение (18 Ом) является рабочей, а вторая 34 Ома – пусковая. 52 Ома – суммарное сопротивление обеих катушек.

На рисунке снизу представлена схема двигателя с тремя выводами:

Двигатели постоянного тока

У двигателей постоянного тока обычно бывает два провода. Поэтому при подаче напряжения он начинает вращаться в определенную сторону. Если вращение не совпадает, в этом случае меняют полярность.

Аналогичным образом можно подключить шаговый двигатель. Например, имеются четыре вывода. Катушки у такого двигателя имеют одинаковое сопротивление, а провода, как правило, имеют цветные.

Подключаем к драйверу в произвольном порядке, смотрим, в какую сторону происходит вращение. Если необходимо поменять направление вращения, провода меняют местами.

Например, подключили – белый, синий, красный, черный. Для смены направления соединим – черный, красный, синий, белый.

Вот мы и рассмотрели, как определить начало и конец обмоток электродвигателя. Если остались вопросы по этой теме, задавайте их в комментариях под статьей!

Потомственный мастер

Электричество, сантехника, установка бытовой техники. Просто о сложном

Как определить начало и конец обмотки в двигателе.

В этой статье я расскажу способ, как определить начало и конец обмотки в асинхронном трёхфазном двигателе.

Когда вам может потребоваться данный материал? Только в том случае, если у вас имеется в коробке брно шесть проводов одинакового цвета и на них нет никаких обозначений. Или ваш двигатель был соединен треугольником, а вы хотите получить возможность соединить его звездой. Как это сделать я писал здесь . Чтобы проще было объяснять материал, сначала пройдемся по принятым маркировкам выводов обмоток двигателей.

Выводы асинхронного двигателя. Маркировка выводов асинхронного двигателя

Встречаются различные маркировки выводов обмоток двигателя. Отечественная маркировка от С1 до С6 и международная, которую вы видите на рисунке.

В наше время встречаются обе маркировки, но для «обучения» мы будем применять новые обозначения, как более наглядные. Ранее, я уже говорил, что начало и конец обмоток понятия абсолютно условные, главное условие, которое играет важную роль это такое соединение обмоток, когда магнитные потоки не направлены встречно. Если два одинаковых потока направить встречно, они как бы уничтожают друг друга. Нам же надо получить согласованное направление магнитных потоков. В двигателе находятся три обмотки. Грубо говоря, двигатель, это трансформатор с тремя обмотками и сердечником в виде статора. Таким образом, обмотки в двигателе связывает магнитный поток, который протекает по статору, а его создает ток, который протекает по обмоткам. Ротор – это лишь приятная «вкусняшка», наличие которой позволяет получить из электрической энергии механическую.

Начало и конец обмоток электродвигателя

Ну что ж, приступим. Прежде, чем начинать процедуру, вам нужно подготовиться. Для этого вам потребуются:

  • мультиметр или лампа накаливания (предпочтительнее, конечно же, мультиметр)
  • маркеры для проводов
  • знание техники безопасности , поскольку вы будете работать с опасным напряжением
  • обычная сетевая вилка с проводом
  • что-то, чем вы будете соединять провода, когда приступите к поиску выводов обмотки
  • ну и материал данной статьи.

В качестве маркеров можно использовать кембрики, бумагу с резинками, цветную изоленту и обычные перманентные маркеры, в общем, что угодно, что позволит вам промаркировать выводы. Вам потребуется шесть маркеров, на которых вы напишете обозначения начала и концов обмоток.

Первым делом нужно определить обмотки двигателя

Названия обмоток тоже абсолютно условны. Хотя, если принимать в расчёт такое понятие, как фазировка, то правильное включение дает точное представление о том, в какую сторону будет вращаться вал двигателя и не более того. Выставляете мультиметр в режим прозвонки , один щуп прикладываете к любому из шести проводов, вторым щупом находите конец, который будет прозваниваться. И эту пару звонящихся концов маркируете. Пусть это будут U1 и U2. Остается четыре конца. Повторяете операцию и еще одну пару снова маркируете. Пусть это будут V1 и V2. Осталась еще пара концов, их проверяете на всякий случай, чтобы быть уверенными, что обмотка в исправном состоянии и тоже маркируете оставшимися маркерами W1 и W2. Теперь у вас есть три обмотки и вы знаете их выводы. Но не знаете, где начало, а где конец каждой обмотки. Другими словами, вы не знаете, как направлены магнитные потоки этих обмоток согласно имеющейся маркировке, поскольку она сейчас носит случайный характер.

Читать еще:  402 двигатель работает на двух цилиндрах

Как определить начало и конец обмоток

Приступаем к поиску концов. Снова предупрежу о технике безопасности, поскольку сейчас вы будете работать с опасным напряжением 220 вольт. Сама процедура очень простая. Вам надо на одну обмотку присоединить лампу или вольтметр (мультиметр, в режиме измерения напряжения ), а две других обмотки соединить последовательно и подать на них напряжение. Теперь рассмотрим эту процедуру подробнее.

С присоединением лампы или вольтмера проблем не возникнет. Допустим это будет обмотка W1-W2. Остается две обмотки. Согласно имеющимся маркерам вы соединяете их в таком порядке, как это показано на рисунке, а именно соединяете между собой U2 и V1. На выводы U1 и V2 подаете ПЕРЕМЕННОЕ напряжение 220 вольт. Обратите внимание, именно переменное, поскольку постоянное превратит наш двигатель в электромагнит, но при этом напряжение в третьей обмотке наводиться не будет. На реальном двигателе это будет выглядеть, как на фотографии ниже:

Обратите внимание, я специально выделил одним цветом (зеленым) соединенные обмотки на схеме и на фотографии. Теперь, если магнитные потоки обмоток совпадут, то в третьей обмотке будет наведено напряжение. Если посчитать грубо, то чуть меньше 100 вольт. Следовательно, лампочка на третьей обмотке начнет светиться, но не в полный накал. Если же магнитные потоки будут направлены встречно, то в третьей обмотке напряжение наводиться не будет и лампочка не загорится. Если лампочка загорелась, все отлично, придумайте, как навсегда промаркировать выводы обмоток и приступаем к третьей. Если лампочка не загорелась, значит меняем местами выводы любой обмотки. Пусть это будет обмотка V1V2 (то есть, если раньше была схема U1→U2→ V1 →V2, то теперь будет схема U1→U2→V2→ V1 ) и снова проверяем. Лампочка засветилась? Отлично! Но прежде чем переходить к третьей обмотке, поскольку мы определили условные начала и концы двух обмоток нужно придумать, как навсегда промаркировать эти выводы, чтобы в дальнейшем вам не пришлось возвращаться к данной процедуре. Теперь будем работать только с третьей обмоткой. Маркеры первых двух трогать уже не будем. К любой из найденных обмоток подключаем третью, а на освободившуюся подключаем лампочку. То есть на обмотку (пусть будет) U1U2 мы теперь подключаем вольтметр или лампочку, а соединяем обмотки V1→V2→W1→W2. И все повторяем по новой. С одним условием, что маркеры обмоток U и V мы не трогаем. Если лампочка при проверке не загорается, то меняем маркеры только на обмотке W.

Как видите, процедура не слишком сложная и при необходимой сноровке займет не больше 15 минут.

Есть и другие методы определения начал и концов обмоток, но они более сложные и требуют стрелочного вольтметра или сборки несложной схемы, хотя с другой стороны, они более безопасные. Но этот метод наиболее простой. А если не боитесь электричества и внимательно прочитали технику безопасности, то вместо мультиметра прозванивать обмотки можно той же лампочкой. Для этого можно использовать такую схему, которую вы видите ниже:

То есть, можно вообще обойтись без мультиметра. Достаточно одной лампочки на 220 вольт.

Онлайн журнал электрика

Статьи по электроремонту и электромонтажу

  • Справочник электрика
    • Бытовые электроприборы
    • Библиотека электрика
    • Инструмент электрика
    • Квалификационные характеристики
    • Книги электрика
    • Полезные советы электрику
    • Электричество для чайников
  • Справочник электромонтажника
    • КИП и А
    • Полезная информация
    • Полезные советы
    • Пусконаладочные работы
  • Основы электротехники
    • Провода и кабели
    • Программа профессионального обучения
    • Ремонт в доме
    • Экономия электроэнергии
    • Учёт электроэнергии
    • Электрика на производстве
  • Ремонт электрооборудования
    • Трансформаторы и электрические машины
    • Уроки электротехники
    • Электрические аппараты
    • Эксплуатация электрооборудования
  • Электромонтажные работы
    • Электрические схемы
    • Электрические измерения
    • Электрическое освещение
    • Электробезопасность
    • Электроснабжение
    • Электротехнические материалы
    • Электротехнические устройства
    • Электротехнологические установки

Как найти начала и концы фаз обмотки электродвигателя

Набросок обмоток электродвигателя

1-ый метод -нам пригодится рядовая плоская батарейка на 4,5 В и комбинированный измерительный прибор (тестер) либо миллиамперметр неизменного тока. Обмотки мы за ранее вызвонили омметром и у нас имеются несколько пар проводов, но нам нужно найти, где у этих пар начало обмотки, а где конец. Берем всякую пару проводов принадлежащих одной из обмоток.

Условно помечаем один из выводов обмотки как начало (Н), а 2-ой как конец (К).
Подключаем тестер на пределе единицы либо 10-ки миллиампер неизменного тока к хоть какой другой паре проводов, принадлежащей другой обмотке.
Минус батарейки присоединяем к нашему условному концу (К) первой обмотки. Касаясь пару раз начала первой обмотки плюсом батарейки, смотрим за показаниями тестера. Нас интересует отклоненение стрелки прибора в момент замыкания цепи «батарейка – обмотка». Если стрелка прибора отклоняется в минус, то переключаем полярность присоединения прибора ко 2-ой обмотке , и опять пару раз замыкаем батарейку на первую обмотку. Сейчас отличия прибора в момент замыкания должны быть в положительную сторону. Тот вывод обмотки, который соединен с плюсом тестера будет началом 2-ой обмотки, а с минусом – концом. Таким же образом определяем начала всех других обмоток.

2-ой метод – две любые “отысканные” фазные обмотки, соедининяем поочередно, и к получившимся свободым концам подключаем 220в, а к оставшейся третьей обмотке подключаем контрольную лампу, и краткосрочно подаем 220в- запоминаем как у нас пылает лампа. Сейчас обмотки которые у нас соедены поочередно меняем подключение, другими словами концы 2-ой меняем местами и снова подаем питание, лампочка должна засветиться по другому либо ярче либо ослабевай. Если загорелась ярче, то обмотки у нас подключись поочередно, это означает идут в таком порядке начало – конец – начао – конец, так их и подписываем. Мы уже знаем верно две обмотки. Сейчас к неизвесной подключаем всякую из узнаваемых и снова уже к этой паре подводим 220 в, а к свободной лампу. Снова включаем питание и сейчас сходу будет видно по яркости накала, как включены обмотки, наносим надписи.

В приведенном примере можно заместо контрольной лампочки применить вольтметр и ориентироваться по отклонению стрелки прибора. Сейчас зависимо от схемы подключения нужно подключить обмотки. Для соединения звездой любые три ( хоть начало хоть концы ) соединяем вмете а к оставшимся трем будет подаваться питание- 380в. Для переключения в треугольк нужно будет сделать еще другие манипуляции. Об этом читайте в статье ” Электродвигатель подключение трегольником”

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector