Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы и управления униполярного шагового двигателя

Принцип работы и управления униполярного шагового двигателя

Шаговым двигателем называют электромеханическое устройство, преобразующее электрические сигналы в дискретные угловые перемещения вала. Применение шаговых двигателей позволяет рабочим органам машин совершать строго дозированные перемещения с фиксацией своего положения в конце движения.

Применяются в станках с ЧПУ, робототехнике, где требуется дискретные движения, фиксация положения и небольшая скорость.

Отличие и разновидности шаговых двигателей

По принципу работы они ближе к двигателям постоянного тока. Конструкция электродвигателей постоянно совершенствуется для уменьшения трудозатрат при изготовлении, повышения КПД и увеличения количество оборотов. У них по сравнению с двигателем постоянного тока нет щёток, коллектора, а обмотки с меньшим количеством витков.

Среди первых двигателей был создан миниатюрный двигатель для ручных часов и назван в честь французского инженера Мариус Лавета. Статор расцеплен на краях или в районе ротора имеет небольшие сужения. Ротор диаметром 1.5 мм, магнитный на основе кобальта. Одна обмотка в один ряд питание 1.5 вольта. Угол поворота 90 градусов.

Моторчик лавета применяется также и в медицине для перекачки различной жидкости, а также часто используется в миксерах и блендерах.

В последнее время ведутся разработки пьезоэлектрических двигателей с использованием пьезомагнитного эффекта и применяя в конструкции ферромагнитные материалы. Совершенствуются линейные электродвигатели, у которых вал не вращается, а совершает линейные движения. Для оборудования точной механики российские производители выпускают двигатели с маркировкой серии:

  1. ДШ.
  2. ДШР.
  3. ДШГ.
  4. ДШЛ.
  5. ШД.
  6. ДШЭ

В производстве их участвуют такие предприятия, как НПО «АТОМ», ZETEK, компания Электропривод, Stepmotor, Вексон, НПО РИФ, Саратовский эл. механический, корпорация ВНИИЭМ, ЗАО Уралэлектромаш, АРК «Энергосервис». Производством ШД FL 203, FL 28, FL 57, 35 HS, 57 HS, 17 HD занимаются зарубежные фирмы: Fulling motor, Autonics, Motionking YUHA motor, Jlangsu, Phytron и другие. Ассортимент выпускаемых ШД разнообразный: по типоразмерам, мощности, со встроенным редуктором и платой управления.

Конструкция и принцип работы

Шаговый двигатель состоит из статора и вращающегося ротора. Сердечник статора выполнен в виде набора листов электротехнической стали (штампованных). Это уменьшает вихревые токи и соответственно нагрев. Статор по окружности разбит на 4.6.8 продольных пазов. Применяется и больше. На выступах между пазами располагаются обмотки в виде катушек. Количество пазов соответствует количеству полюсов двигателя. Чем больше полюсов, тем меньше угол поворота ротора, то есть шаг.

Ротор состоит из одного или двух постоянных магнитов, с торцов, металлические пластины которого закреплены с зубьями. При этом плюса S и N постоянного магнита разбиваются на n полюсов, что соответствует количеству зубьев. Это также влияет на величину шага вращения. По конструкции ШД выпускаются трёх типов в зависимости от конструкции ротора:

  • реактивный;
  • ротор из постоянного магнита;
  • гибридный.

Реактивный — ротор выполнен из ферромагнитного материала с продольными пазами, полюсами. Он используется редко, только для выполнения простых задач. В основном из-за того, что у него нет стопорящего момента. Гибридный — ротор изготовлен из двух половинок ферромагнитного материала, с продольными пазами и между ними расположен постоянный магнит. Пазы половинок относительно друг друга, сдвинуты на небольшой угол, для понижения шага. Они чаще всего применяются.

При подаче импульсного напряжения на обмотку статора образуется электромагнитное поле. Взаимодействуя, с ближайшим полюсом постоянного магнита создаётся крутящий момент. Вал двигателя поворачивается на определённый угол. Угол поворота в основном зависит от количества полюсов ротора.

Такой двигатель и будет называться шаговым. Благодаря небольшим размерам ШД серии Em 422 применяется в матричных принтерах.

Методы управления фазами

Управление в основном зависит от количества полюсов и конфигурации обмоток статора. ШД выпускаются в основном со следующими обмотками:

  1. Две обмотки с 4 выводами.
  2. Две обмотки с 6 проводами со средним выводом.
  3. Четыре обмотки — 8 выводов.
Читать еще:  Высокие обороты двигателя на холостом ходу мерседес

Управлять можно двумя методами, использовать однополярное напряжение — униполярное или двухполярное — биполярное. Униполярный шаговый двигатель имеет 4 полюса и 2 обмотки. У четырехфазного каждая обмотка разделена пополам и располагается на противоположных полюсах. Вращение осуществляется поочерёдной подачей напряжения на обмотки. При 6 выводах или 5 тоже 2 обмотки, но с отводом от середины. Обычно средние выводы катушки соединяются вместе на минусовой провод, а плюсовой через управляемые ключи подаётся на обмотки.

Двигатели с биполярным управлением имеют 4 обмотки, по 2 на каждую фазу. Управление происходит при смене полярности обмотки. При таком управлении усложняется схема подключения шагового двигателя, но крутящий момент при этом получается больше. Основные характеристики — напряжение питания, потребляемый ток фазы, шаг, мощность и размер фланца. Посадочные места стандартизированы и указываются как, например, Nema 23. Это соответствует расстоянию между отверстиями под крепление 57 мм.

Способы управления шаговым двигателем

Применение ШД в станках с ЧПУ конкурирует только с сервоприводами, например, в эрозионных станках или принтерах, они даже превосходят их по своим техническим возможностям, себестоимости и простым схемам управления. Управление можно осуществлять на цифровых микросхемах, специализированных — А3977, на программированной PIC16, через ключи или драйверы SMSD 1.5.

Большинство драйверов управляются компьютером через порты RS-232, USB и LPT. Они вырабатывают сигналы управления: шаг, направление, разрешение и обеспечивают дробление шага на ½ до 1/32 и работают с программами: MACH3, KCam, DeskCNC, Turbocnc и другими. Кабелем подключить двигатель к драйверу согласно описанию. Изучив работу программы, запустить в работу несложно. Для включения используется напряжение от 5 вольт до 48 вольт. Исключения составляют двигатели на 220/110 вольт.

Микрошаговый режим привода

Основное время работы ШД происходит в пошаговом или полушаговом режиме, а при пуске и остановке желательно использовать микрошаговый режим для точной фиксации. Пошаговый режим определён конструкцией и импульсным управлением. При микрошаговой работе на обмотки подаются синусоидальные напряжения с нужным сдвигом фаз.

Ротор фиксируется при определённом соотношении фаз токов в обмотках. Расчёт точки равновесия произвести по формуле x = S *pi/2*arctg a/b где:

  • a — момент, создаваемый первой фазой и b — второй фазой;
  • x — точка равновесия ротора или микрошаг в радианах;
  • S — угол шага.

А также надо учитывать максимальную частоту управляющего сигнала, при которой нет потери или добавления лишнего шага в процессе работы. Она является основным показателем переходного режима шагового двигателя и обозначается в характеристиках, как частота приёмистости двигателя.

В процессе эксплуатации необходимо следить за чистотой вокруг привода и не допускать попадания металлической стружки, возможен выход из строя ШД. Найти способ защитить привод. Ремонт аналогичен ремонту коллекторного двигателя, требует аккуратности.

После разборки взять и продуть сжатым воздухом статор и ветошью протереть ротор. Проверить отсутствие биения подшипников.

Подключение шагового двигателя FL86STH65-2808A к микроконтроллеру.

Попал ко мне в руки на днях шаговый двигатель FL86STH65-2808A с драйвером SMD-4.2, задача была научиться управлять ним, используя микроконтроллер.

Первым делом надо подключить двигатель к драйверу, из двигателя выходит 8 проводов и их можно соединить двумя способами, как показано на картинке ниже.

При последовательном соединении обмоток максимального момента можно добиться только на низких скоростях, при этом энергопотребление будет низким, плюс параллельного соединения проявляется на высоких скоростях — момент падает медленнее чем при последовательном, минус — в более высоком энергопотреблении. Зависимость графика от момента показа на картинке ниже.

Читать еще:  Двигатель глохнет на холостых оборотах и не заводится

В моём случае важно чтобы двигатель обладал достаточным моментом на высоких скоростях, поэтому соединил обмотки параллельно.

Скручиваем провода между собой и зажимаем их в клеммнике.

Для получения нужного тока был специально приобретён блок питания на 48 вольт, но для тестов можно использовать обычный компьютерный блок питания.

Что имелось в виду под получением нужного тока?

Так как мы соединили обмотки двигателя параллельно, то ток, протекающий через двигатель, равен Iфазы * √2 или 1.4*Iфазы. Понять это очень просто,в документации указывается рабочий ток обмотки/фазы и её сопротивление. Максимальная мощность потребляемая двигателем, остаётся одинаковой при параллельном и последовательном включении обмоток и равна

При параллельном соединении обмоток, полное сопротивление двигателя в 2 раза меньше сопротивления обмотки, давайте подставим его в формулу

Что и требовалось доказать.

Силовые линии подключили, осталось подключить сигнальные. Для управления двигателем используются три сигнала: ENABLE, DIR и STEP, если перевести их названия, становится понятно какой за что отвечает. Для тех кто учил немецкий разъясню, уровень сигнала DIR определяет направление вращения, по каждому фронту сигнала STEP делается шаг. Отключение обмоток двигателя осуществляется при переходе сигнала ENABLE с низкого в высокое состояние. Ниже изображена осциллограмма управляющих сигналов.

Если посмотреть на драйвер, то можно увидеть, что под управляющие сигналы выделены 6 входов, вместо трёх, это сделано для того, чтобы можно было управлять вращением двигателя сигналами любой полярности.

Ток, протекающий через сигнальные линии может быть от 10 до 16mA, поэтому их можно напрямую подключать к выводам МК.

В качестве источника, управляющих сигналов, выберем схему с открытым коллектором, ниже изображена схема подключения драйвера к Atmega16.

Теперь давайте напишем код, чтобы при нажатии на одну кнопку двигатель вращался в одну сторону, при нажатии другой кнопки в другую.

Как правильно подключить шаговый двигатель.

Очень часто возникает необходимость подключить шаговый двигатель к устройству управления(контроллеру) без возможности проверки обмоток прибором, омметром, мультиметром.

Не расстраивайтесь, используя обратимость шагового двигателя, т.е. его «генераторную» функцию, мы легко можем найти выводы обмоток и правильно подключить к устройству.

Для того чтобы найти выводы обмоток 4-х выводного двигателя, необходимо найти такую пару выводов, при замыкании которых вал шагового двигателя будет вращаться рукой с усилием. Происходит это потому, что двигатель при вращении вала рукой работает как генератор и замыкание выводов обмотки является подключением нагрузки на эту обмотку. Вторая пара выводов будет работать точно так же, при замыкании проводов вал двигателя вращается с трудом.

Это и есть две обмотки шагового двигателя.

Раз мы нашли пары выводов обмоток, можем их подключить. Допустим, на разъеме мы определили, что выводами одной обмотки являются красный и черный провода, выводами другой – белый и желтый.

Если они включены в разъем так как показано на рисунке, то двигатель можно смело подключать к большинству устройств, т.к. стандартом принято размещение на разъемах выводов обмоток как А1-А2-В1- В2, или В1-В2-А1-А2 где А1 и А2 выводы одной обмотки, а В1 и В2 – выводы другой обмотки(на фото)

Если же выводы обмоток перепутаны, например, чередуются как А1-В1-А2-В2,то можно либо перепаять провода, но лучше просто вынув среднюю пару контактов из разъема, воткнуть их в нужные гнезда. Устройство разъема позволяет делать это многократно.

Нажав сверху отверткой или иглой на зуб-фиксатор вынимаем провод вместе с контактом из корпуса разъема, затем лезвием ножа слегка поднимаем зуб-фиксатор(как показано на фото) и вставляем его в нужное гнездо .

Читать еще:  Величина среднего давления в цилиндре дизельного двигателя

После этого снова проверяем обмотки, закорачивая выводы разъема отрезком провода, и если обмотки размещены правильно – подключаем шаговый двигатель к устройству, не забывая убрать «закоротку».

Не стоит волноваться за неправильную полярность, в большинстве случаев направление вращения двигателя можно изменить из программы, а если необходимо поменять направление вращения двигателя без вмешательства в программу или там где это невозможно, меняем выводы одной обмотки местами, например, меняем черный с красным или желтый с белым.

Разъемы типа DUPONT можно просто перевернуть «задом наперед» , тогда направление вращения двигателя тоже поменяется.

На фото разъем типа DUPONT

Настройка двигателей без приборов.

Первое — настройку надо всегда начинать с минимальных токов двигателя.

Ориентировочно определить ток можно по шуму двигателя, чем ток больше, тем сильнее шумит двигатель. Также можно определить по усилию, нообходимому для поворота вала вручную, чем больше ток, тем сильнее двигатель. Также можно определить ток по нагреву драйвера или самого двигателя. Чем сильнее греется то и (или) другое, тем больше ток.

Оптимальным считается такой ток, когда устройство не имеет пропусков шагов, двигатель не останавливается где хочет, легко преодолеваются небольшие тормозящие усилия на валу, двигатель не шумит, двигатель и драйвер нагреваются не более чем до 40-50 градусов (мизинец терпит такую темппературу). Все вышеуказанное должно соблюдаться даже в процессе длительной работы.

Слишком большой ток может являться причиной лишнего дергания привода, стуков, шума и писка двигателей и резонансного шума всей механики.

Шаговый двигатель

Настройка тока на драйверах шагового двигателя

Если ток завышен, то двигатель греется, если ток занижен, то снижается сила, с которой он сопротивляется проворачиванию, и двигатель может начать пропускать шаги.

Шаг — угол шага бывает 1,8 град (200 шагов), 5.625 Градусов (64 шага), 7.2 градуса (50 шагов)

Удерживающий крутящий момент — это то, с какой силой двигатель, если на него подан номинальный ток, будет сопротивляться попыткам его провернуть. Если подать на двигатель ток равный номинальном, это обеспечивает максимальный момент удержания.

Количество фаз — количество контактов/проводов у шагового двигателя

  1. Биполярный двигатель — это наиболее простая конфигурация с 4 — мя выводами.
  2. Униполярный двигатель (5 или 6 контактов). Позволяет легко изменить магнитные полюса. Запитав сначала один вывод обмотки, а затем другой — мы изменяем магнитные полюса. Основным недостатком является то, что каждый раз, используется только половина доступных катушечных обмоток.
  3. 8-выводной шаговый двигатель может быть подключен любым из возможных способов:
    • 5 или 6-выводной униполярный,
    • биполярный с последовательно соединенными обмотками,
    • биполярный с параллельно соединенными обмотками,
    • биполярный с одним подключением на фазу для приложений с малым потреблением тока

Драйвер для шагового двигателя

Схема соединений шагового двигателя и Arduino

Скетч управления поворотом шагового двигателя с помощью кнопок.

При нажатии на первую кнопку шаговый двигатель перемещается на 200 шагов по часовой стрелке, при нажатии на другую кнопку шаговый двигатель перемещается на 200 шагов против часовой стрелки.

Схема подключения шаговый двигатель -EasyDriver -Arduino

Схема подключения шаговый двигатель -EasyDriver -Arduino

Программа для вращения шагового двигателя — EasyDriver и Arduino

В данном примере рассматривается управление шаговым двигателем с использованием контроллера EasyDriver и Arduino. После прошивки платы и подключения, ротор будет вращаться в одном и противоположном направлении.

digitalWrite(dirpin, LOW); // Устанавливаем направление

Галерея схем подключения шагового двигателя к ардуино

    Похожие записи

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector