VI Международная студенческая научная конференция Студенческий научный форум — 2014
VI Международная студенческая научная конференция Студенческий научный форум — 2014
ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ШАГОВЫХ ДВИГАТЕЛЕЙ В ПРОМЫШЛЕННОСТИ
- Авторы
- Файлы работы
- Сертификаты
Шаговые двигатели имеют давнее и широкое применение в самых различных устройствах, особенно нас интересует область применения в специальном и промышленном оборудовании.
Для начала разберёмся, что собой представляет шаговый двигатель, его строгое определение такого: шаговый двигатель – это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические перемещения.
По сути же, шаговый двигатель является точечным механизмом: он совершает именно такие действия, и их количество, какие нужно в соответствии со строгим регламентом. Отличительная особенность этих двигателей – это возможность без датчика обратной связи осуществлять позиционирование по положению. Он относится к классу так называемых «бесколлекторных» двигателей постоянного тока. Такие двигатели как непосредственно и любые другие бесколлекторные электрические машины, имеют достаточно высокую надёжность и высокий срок службы, что в свою очередь позволяет применять их в самых разных индустриальных сферах. Если сравнивать обычные электродвигатели постоянного тока с шаговыми двигателями, то последние требуют более сложных схем управления, выполняющие абсолютно все коммутации обмоток.
Достоинство шагового двигателя заключается в том, что последовательная активация обмоток двигателя порождает дискретные угловые перемещения (шаги) ротора, а угол поворота ротора определяется числом импульсов, которые поданы на двигатель, что и обеспечивает ему полное выполнение действий и повторяемость их совершения. Хорошие шаговые двигатели имеют точность 3-5 % от величины шага. К счастью, эта ошибка не накапливается от шага к шагу в процессе работы. Ещё к достоинствам шагового двигателя относятся: возможность быстрого старта, остановки, реверсирования (возвратного действия), высокая надёжность, точность; также зависимость положения от входных импульсов обеспечивает позиционирование без возвратного действия. Имеется возможность получения очень низких скоростей вращения для нагрузки, присоединённой непосредственно к валу двигателя без промежуточного редуктора. Так как скорость пропорциональна частоте входных импульсов, можно перекрыть довольно большой диапазон скоростей. Срок службы шагового двигателя фактически определяется сроком службы подшипников.
Когда требуется позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением. Как и для обычных двигателей, для повышения момента может быть использован понижающий редуктор. Однако для шаговых двигателей редуктор не всегда подходит. В отличие от коллекторных двигателей, у которых момент растет с увеличением скорости, шаговый двигатель имеет больший момент на низких скоростях. К тому же, шаговые двигатели имеют гораздо меньшую максимальную скорость по сравнению с коллекторными двигателями, что ограничивает максимальное передаточное число и, соответственно, увеличение момента с помощью редуктора.
К сожалению, шаговым двигателям присуще явление резонанса, возможна потеря контроля положения ввиду работы без обратной связи, а потребление энергии не уменьшается даже без нагрузки. Затруднена работа на высоких скоростях, невысокая удельная мощность, относительно сложная схема управления. Когда требуется прецизионное позиционирование и точное управление скоростью, а требуемый момент и скорость не выходят за допустимые пределы, то шаговый двигатель является наиболее экономичным решением.
По большей части описанная характеристика касается, пожалуй, тех шаговых двигателей, что имеются в принтерах и сканерах, но имеет влияние и в конвейерном производстве.
Сегодня существует три основных вида шаговых двигателей:
Гибридные – наиболее часто используемые во фрезерных станках с числовым программным управлением;
С постоянными магнитами;
Двигатели, имеющие переменное магнитное сопротивление.
Гибридные двигатели являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3.6 – 0.9 град.). Гибридные двигатели сочетают в себе лучшие черты двигателей с переменным сопротивлением и двигателей с постоянными магнитами.
Его применение особенно широко в станках с ЧПУ (числовое программное управление) по дереву, для воздушно-плазменной резки, фрезеровочные станки и другие.
Также шаговые двигатели используют для управления чертёжной головкой чертёжных автоматов, в устройствах контроля профилей кошмовальных станков, которые используют для контроля данных на перфоленте копировальных станков с цифровым программным управлением – шаговый двигатель служит для управления звёздочкой, передвигающей ленту.
К другим областям применения относятся факсимиле, устройство, предназначенное для передачи документов и чертежей на расстояние с помощью телефонных линий, называются факсимиле-машинами.
Документ, навернутый на барабан, сканируется и поворачивается (субсканирование), затем делится на графические элементы, которые переводятся в электрические сигналы фотоэлектрической считывающей головкой. Сигналы затем посылаются по линиям передач к принимающему устройству. Принимаемые сигналы демодулируют и воспроизводят записывающим пером. Горизонтальное сканирование и повороты барабана повторяются воспринимающим устройством. Шаговые двигатели используют при управлении барабаном для субсканирования как в передающем, так и в принимающем устройстве.
Полуавтоматическое устройство для монтажа плат – весь монтаж программируется и запоминается на перфоленте. Как только нажатием кнопки запускается программа монтажа, лампочка индикатора указывает первый из требуемых проводников. Одновременно с этим запускаются два шаговых двигателя, обеспечивающие перемещение по горизонтальной и вертикальной осям и определяется отверстие, в которое вставляется монтируемый проводник. Оба двигателя задействуются сразу, как только очередной монтаж выполнен.
Шаговые двигатели используют в космических летательных аппаратах, запускаемых для научного исследования планет. На сканирующей платформе располагают различные приборы, например, телевизионные камеры и ультрафиолетовые спектрометры. Шаговые двигатели применяют для их наведения на нужную цель. На аппарате Mariner использовали четырехфазные двигатели с постоянными магнитами 11-го калибра (27 мм в диаметре) с углом шага 90град. Зубчатая передача электропривода с передаточным отношением 9081:1, заключенная в металлический контейнер, обеспечивает на каждом шаге двигателя поворот вала на 0,1792 м-рад (около 0.1 град.).
Шаговой двигатель для ЧПУ: как определиться с выбором?
Какие критерии определяющие для выбора?
Надо помнить о том, что, по сравнению с обычными двигателями, шаговые требуют более сложных схем для управления. А критериев не так уж много.
- Параметр индуктивности.
Первый шаг – определение квадратного корня из индуктивности обмотки. Результат потом умножаем на 32. Значение, полученное в качестве итога, потом требуется сравнивать с напряжением источника, от которого питание идёт к драйверу.
Эти числа не должны отличаться друг от друга слишком сильно. Мотор будет греться и шуметь слишком сильно, если напряжение питания больше полученного значения на 30 и больше %. Если же он меньше, то, по мере нарастания скорости, крутящий момент убывает. Чем больше индуктивность – тем проще сохранить высокий крутящий момент. Но для этого надо подобрать драйвер, имеющий большое напряжение питания. Только в этом случае шаговой двигатель работает нормально.
- График того, как крутящий момент и скорость зависят друг от друга.
Это позволит понять, насколько двигатель в принципе соответствует запросам и техническому заданию.
- Параметры геометрического плана.
Особое внимание рекомендуется уделить диаметру вала, фланцу и длине двигателя.
Кроме того, следующие показатели так же рекомендуется внимательно изучить:
- Максимальный статический синхронизирующий момент.
- Момент по инерции у роторов.
- Ток внутри фазы по номиналу.
- Общее сопротивление фаз омического типа.
CNC-DESIGN
Шаговые двигатели выбор и расчет основных параметров. Шаговый двигатель — это электромеханическое устройство, которое преобразует электрические импульсы в дискретные механические движения. Вал шагового двигателя вращается с дискретным шагом, когда на него подаются управляющие импульсы в правильной последовательности. Вращение двигателей напрямую зависит от входящих импульсов, так же они напрямую управляют направлением и скоростью вращения вала двигателя.
Преимущества и недостатки шагового двигателя: Преимущества: — угол поворта двигателя пропорционален входным импульсам; — фиксация положения при остановке током удержания; — точное позиционирование и повторяемость движения, так как большинство шаговых двигателей имеют точность 3-5% шага, и эта ошибка не суммируется от одного шага к следующему; — низкая инертность при запуске, остановке и реверсе; — высокая надежность, поскольку в двигателе отсутствуют контактные щетки, поэтому срок службы двигателя в основном зависит от срока службы подшипников; — реакция двигателя на цифровые входные импульсы обеспечивает управление без обратной связи, что делает систему более простой и, следовательно, более экономичной; — можно достичь очень низкой скорости синхронного вращения с нагрузкой, которая напрямую связана с валом; — можно реализовать широкий диапазон скоростей вращения, так как скорость пропорциональна частоте входных импульсов; — шаговые двигатели дешевле серводвигателей.
Недостатки: — может возникнуть явление резонанса, при некорректном расчете узла или системы управления; — двигатель непрост вэксплуатации наочень высоких скоростях, 3000+ об/мин; — сложность системы управления; — падение мощности с ростом скорости вращения; — отсутствие обратной связи; — невысокая удельная мощность; — низкая скорость вращения; — шум.
Выбор шагового двигателя. Шаговый двигатель можно использовать когда требуется контролируемое движение. Они могут использоваться в приложениях, где необходимо контролировать угол поворота, скорость, положение и синхронизацию. Из-за присущих выше преимуществ, шаговые двигатели нашли свое место в различных устройствах: принтеры, плоттеры, лазерные резаки, гравировальные станки, устройства захвата и так далее. При выборе шагового двигателя для вашего устройства необходимо учитывать несколько факторов: Как двигатель будет связан с нагрузкой? Какие скорость и ускорения необходимо реализовать? Какой крутящий момент необходим для перемещения исполнительного механизма? Какая степень точности требуется при позиционировании?
Количество полюсов (однополюсный/биполярный) Обычно шаговые двигатели имеют две фазы, но также существуют трех- и пятифазные двигатели. Биполярный двигатель с двумя фазами имеет одну обмотку/фазу, а однополярный двигатель имеет одну обмотку с центральным отводом на фазу. Иногда шаговый двигатель называют четырехфазным двигателем, хотя он имеет только две фазы. Двигатели с двумя отдельными обмотками на фазу могут приводиться в двухполярный или однополярный режим. Желательно, чтобы количество проводов на двигателе соответствовало количеству контактов на драйвере, чтобы не заниматься различными ухищрениями при подключения.
Номинальный ток Обычно указывается максимальный ток, который подается одновременно на обе обмотки. Максимальный ток через одну обмотку (который действительно имеет значение при использовании микрошагов) указывается достаточно редко. При подаче номинального тока на одну обмотку происходит нагрев двигателя, из-за этого обычно ограничивают ток двигателя не более 85% от номинального тока. Для достижения максимального крутящего момента двигателя без перегрева, необходимо выбрать двигатель с номинальным током не более чем на 25% выше, чем рекомендуемый максимальный ток привода шагового двигателя.
Крутящий момент Выходной крутящий момент и мощность шагового двигателя зависят от размера двигателя, теплоотвода, рабочего цикла, обмотки двигателя и типа используемого привода. Если шаговый двигатель работает без нагрузки во всем диапазоне частот, одна или несколько точек собственных колебаний резонанса могут быть обнаружены либо по звуку, либо по датчикам вибрации. Полезный крутящий момент от шагового двигателя может быть резко уменьшен за счет резонансов. Работы на резонансных частотах следует избегать. Внешнее демпфирование, дополнительная инерция или применение микрошагов используются для уменьшения эффекта резонанса.
Удерживающий момент Это максимальный крутящий момент, который может обеспечить двигатель, когда обе обмотки находятся под напряжением при полном токе. Крутящий момент пропорционален току (за исключением очень малых токов), поэтому, например, если вы установите драйверы на 85% от номинального тока двигателя, то максимальный крутящий момент будет 85% * 0,707 = 60% от указанного удерживающего момента. Крутящий момент возникает, когда угол ротора отличается от идеального угла, который соответствует току в его обмотках. Когда шаговый двигатель ускоряется, возникает крутящий момент для преодоления собственной инерции ротора и массы нагрузки, приводимой в движении. Чтобы создать этот крутящий момент, угол ротора должен отставать от идеального угла. Известно, что использование микрошага снижает крутящий момент. На самом деле это означает, что угол запаздывания равен углу, соответствующему одному микрошагу (поскольку вы хотите, чтобы положение было с точностью до одного микрошага), более высокое значение микрошага предполагает уменьшение угла, а значит и уменьшение крутящего момента. Крутящий момент на единицу угла (что действительно имеет значение) не уменьшается при увеличении микрошага. Иными словами, отправка импульса на двигатель на один микрошаг 1/16 приводит к точно таким же фазовым токам (и, следовательно, к тем же силам), что и к отправке двух 1/32 микрошагов или четырех 1/64 микрошагов и так далее.
Размер Шаговые двигатели также классифицируются в соответствии с размерами корпуса, которые соответствуют размеру рамы двигателя. Например, шаговый двигатель NEMA11 имеет размер рамы приблизительно 1,1 дюйма (28 мм). Аналогично, шаговый двигатель NEMA23 имеет размер корпуса 2,3 дюйма (57 мм) и т. д. Однако длина корпуса может изменяться от двигателя к двигателю в рамках одной и той же классификации размеров, при этом крутящий момент двигателя с определенным размером рамы будет увеличиваться с увеличением длины корпуса.
— габарит рамы 20х20 мм; — диапазон длин: 30-42 мм; — крутящий момент: 0,18-0,3 кг*см.
шаговый двигатель, серводвигатель: преимущества и недостатки
Шаговые двигатели и серводвигатели используются для схожих применений, но один из них используется там, где нужна более точное позиционирование и скорость перемещения.
Существенная разница заключается в том, что шаговые двигатели работают без обратной связи. Т.е. Вы посылаете импульс STEP на драйвер и двигатель поворачивается на угол одного шага.
Чтобы понять как работает шаговый двигатель, можно взять кварцевые часы, в которых секундная стрелка на каждый сигнал STEP совершает 1 шаг (перемещается на 1 секунду) и совершает 1 оборот за 60 импульсов STEP или 60 секунд. Точность совершения этих секундных перемещений зависит только от электроники, которая формирует управляющие сигналы.
10 наиболее значимых преимуществ шагового двигателя:
1) Стабильность. Работает при различных нагрузках.
2) Не требует обратной связи. Двигатель имеет фиксированный угол поворота.
3) Относительно невысокая стоимость для организации систем контролированных перемещений
4) Стандартизированные размеры двигателя и угол поворота.
5) Простота в установке и использовании.
6) Надежность. Если что-либо поломается, двигатель остановится.
7) Долгий срок эксплуатации.
8) Превосходный крутящий момент на низких оборотах.
9) Превосходная повторяемость при позиционировании.
10) Шаговый двигатель не может сгореть при нагрузке, превышающей максимальный вращающий момент двигателя. (При такой нагрузке двигатель будет просто пропускать шаги).
10 наиболее важных преимуществ серводвигателей:
1) Высокая мощность по сравнению с размерами и весом двигателя.
2) С помощью энкодера определяется разрешение.
3) Высокая эффективность. Может достичь 90% при небольших нагрузках.
4) Высокий крутящий момент по отношению к инерции. Работает с быстрым ускорением.
5) Резервирует энергию для поддержания питания на короткий период.
6) Резервирует вращающий момент для поддержания вращения на короткий период.
7) Двигатель остается прохладным. Ток потребления пропорционален нагрузке.
8) Высокий крутящий момент на высокой скорости.
9) Тихая работа на высоких скоростях.
10) Отсутствие явлений резонанса и вибрации.
10 наиболее значимых недостатков шаговых двигателей:
1) Низкая эффективность. Мотор потребляет много энергии независимо от нагрузки.
2) Крутящий момент резко снижается при увеличении частоты вращения (крутящий момент обратно пропорционален скорости.)
3) Низкая точность. 1:200 при полном шаге.1:2000 при микрошаге.
4) Склонен к резонансу. Для устранения резонансных процессов требуется микрошаг.
5) Отсутствует обратная связь для контроля шагов.
6) Не может резко стартовать на высокой скорости (Требуется плавный разгон).
7) Высокий нагрев двигателя в процессе работы.
8) Шаговый мотор не может моментально продолжить работу после перегрузки на валу.
9) Шумный на средних и высоких скоростях.
10) Низкая мощность по сравнению с размером и весом.
10 наиболее значимых недостатков серво двигателей (кроме их относительно дорогой стоимости):
1) Для стабильной работы двигателя требуется настройка драйвера (ПИД-регулятор).
2) Мотор может сгореть. Для предотвращения этого требуются специальные защитные цепи в драйвере.
3) Необходимо наличие энкодера.
4) Низкий срок эксплуатации щеток двигателя (требуется регулярное обслуживание и замена).
5) Пиковые нагрузки сокращают рабочий цикл.
6) При длительной работе с перегрузками двигатель может сгореть.
7) Сложность выбора двигателей, энкодеров и серводрайверов.
8) Многократное увеличение потребляемой энергии при пиковых нагрузках.
9) Двигатель развивает пиковую мощность на высокой скорости.
10) Плохое охлаждение двигателя. Требуется внешний вентилятор.
Шаговые двигатели.
Шаговые двигатели.
Шаговые двигатели являются одними из самых распространенных типов двигателей в приборах самого широкого применения. Эти двигатели можно встретить во всех типах копиров, принтеров, МФУ, в факсах, сканерах, дисках, кассовых аппаратах и т. д.. В технике, особенно в устройствах, перечисленных выше, наибольшее применение нашли четырехфазные двигатели. Такие двигатели могут иметь разное количество обмоток возбуждения на статоре (2, 4, 8, 12) намотанные самым различным образом, но все эти обмотки соединяются в две или четыре фазы. Сопротивления фаз двигателя составляет обычно от нескольких Ом до нескольких десятков Ом. В подавляющем большинстве случаев эквивалентную схему обмоток двигателя можно представить тремя способами. Первый способ заключается в том, что все четыре фазы имеют общую точку в которую, обычно, подается питающее напряжение, а переключение фаз осуществляется ключевыми транзисторами, которые при замыкании обеспечивают протекание тока на «корпус» (рис. 1). Второй способ подразумевает парное соединение фаз, т.е. каждые две фазы имеют общую точку и не связаны с другими двумя фазами (рис. 2). Третий способ заключается в парном включении двух фаз, причем они включаются параллельно (рис. 9,10). Фазы различаются направлением протекающего тока возбуждения. Если в первых двух случаях ток через фазы протекал только в одном направлении, то в последнем варианте ток будет уже двунаправленным.
Таблица 1
При управлении двигателем используют три основных режима работы: режим полного шага (Full Step); режим полушага (Half Step); режим волнового управления (Wave Drive).
Режим волнового управления Wave Drive, несмотря на свою простоту, используется крайне редко для управления двигателями в устройствах оргтехники. Чаще всего применяются первый и второй способы, позволяющие более точно управлять двигателем. Эти способы характеризуются тем, что для совершения шага необходимо обеспечивать протекание тока возбуждения одновременно через две фазы. Протекание тока через одну фазу приводит к тому, что ротор стоит и находится в режиме удержания.
Скорость вращения двигателя определяется частотой переключения управляющих транзисторов, т.е. частотой сигналов от схемы управления двигателем (драйвера двигателя). Кроме того, скорость двигателя в определенной степени зависит от значения тока возбуждения обмоток, т.е. от уровня питающего напряжения. Направление вращения ротора задается порядком формирования управляющих импульсов. Ротор может вращаться в любом направлении. Например, если обмотки подключать в таком порядке: W1+W2, W2+W3, W3+W4, W4+W1 и т.д., то ротор будет вращаться по часовой стрелке, а если в порядке: W1+W4, W4+W3, W3+W2, W2+W1 и т.д., то ротор вращается против часовой стрелки. Теперь несколько подробнее о каждом из режимов управления двигателем.
Режим волнового управления (Wave Drive) является наиболее простым для реализации, и в этом режиме для того, чтобы двигатель сделал шаг необходимо, чтобы ток возбуждения протекал только через одну фазу двигателя. Поочередно переключая фазы, однако во вполне определенном порядке, обеспечивают непрерывное вращение ротора. Таким образом, в этом режиме в каждый момент времени «запитывается» только одна фаза. В табл. 1 представлен алгоритм управления двигателем в данном режиме. В этой таблице буквой Н обозначается активность управляющего сигнала для соответствующей фазы, а следовательно и момент протекания тока возбуждения, буквой L обозначаются моменты неактивности сигнала.
На рис. 4 представлены временные диаграммы сигналов, управляющих ключевыми транзисторами.
Режим полного шага Full Step, или как его еще называют — режим четырехтактной коммутации — позволяет обеспечить высокую скорость вращения ротора и применяется обычно при быстрых перемещениях устройств, приводимых в действие таким двигателем. В этом режиме двигатель делает шаг только в том случае, если протекает ток через две фазы одновременно, однако эти фазы не должны быть парными. Алгоритм управления двигателем в режиме полного шага можно видеть в табл. 2. Анализ таблицы показывает, что в каждый момент времени двигатель делает шаг, т.е. «запитаны» две «соседние» обмотки. Временные диаграммы управляющих сигналов — на рис. 5.
Таблица 2
Режим полушага Half Step, или как его еще называют — режим восьмитактной коммутации используется при более низких скоростях перемещения устройств, кроме того, за счет более низкой скорости этот режим позволяет более точно позиционировать приводное устройство. В этом режиме двигатель поочередно делает шаг и находится в режиме удержания, т.е. алгоритм работы можно представить в виде: шаг — остановка — шаг — остановка — и т.д. Таким образом, в двигателе ток возбуждения поочередно протекает то через две фазы одновременно, то через одну. В этом случае так же, как и в предыдущем, двигатель делает шаг только тогда, когда ток протекает через две обмотки, которые не должны быть парными. При остановке ток протекает только через одну фазу, которая в этот момент становится обмоткой удержания и фиксирует положение ротора. Алгоритм управления двигателем в режиме полушага приводится в табл. 3, а временные диаграммы — на рис. 6.
Таблица 3
Индукторный шаговый двигатель является одним из самых широко применяемых шаговых двигателей с самоподмагничиванием. Индукторный шаговый двигатель часто используют в приводах сканирующих устройств или для перемещения каретки матричных принтеров. Принцип действия всех шаговых двигателей основан на дискретном изменении состояний магнитного поля в рабочем зазоре двигателя за счет возбуждения тех или иных его обмоток.
При перемещении магнитного поля статора, образованного током в обмотках управления (фазах) шагового двигателя, ротор дискретно перемещается вслед за магнитным полем со скоростью и дискретностью, определяемыми типом двигателя и его конструктивными особенностями. Обычно используются двигатели с четырехпроводной передачей. Угловой шаг таких двигателей =360°/(Z*n), где Z — количество зубцов ротора, n — количество фаз. В печатающих устройствах нашли применение четырехфазные двигатели, поэтому формула для вычисления углового шага =90°/Z.
Четырехфазный индукторный шаговый двигатель с самоподмагничиванием состоит из статора с восемью полюсными выступами, вокруг которых уложена обмотка, соединенная в четыре фазы (рис. 7). На полюсах ротора имеются зубцы. Ротор представляет собой ферромагнитный пассивный зубчатый цилиндр. Причем зубцовое деление ротора равно зубцовому делению статора.
Рис. 7
При возбуждении какого-либо полюса статора, которое происходит при протекании тока через две обмотки соседних полюсов (I1 и I2 на рис.8), на этих полюсах возникает магнитный поток Ф имеющий направление, указанное на рис.8.
Рис. 8
В результате, ротор занимает такое положение при котором его зубцы совпадают с зубцами этого полюса статора. При этом зубцы ротора относительно зубцов соседних полюсов оказываются сдвинутыми на % зубцового деления. При возбуждении следующего полюса ротор от рабатывает шаг, повернувшись на соответствующий процент зубцового деления. Благодаря такому устройству эти двигатели имеют очень малый угловой шаг (от 1° до 15°) и большое быстродействие по частоте (до 3 — 4 кГц) при сравнительно низких скоростях вращения. Самоподмагничивание у этих двигателей осуществляется за счет постоянной составляющей тока в фазах статора. Простота конструкции и схемы управления обусловили широкое применение этого типа двигателя. Величина шага обратно пропорциональна числу зубцов ротора и числу фаз. Для получения малой величины шага следует увеличить число зубцов на роторе. Однако при этом возрастет диаметр ротора, увеличится его момент инерции и быстродействие падает. Также можно увеличивать число фаз, однако таким путем не идут, так как усложняется построение схемы управления.
Для четырехфазных шаговых двигателей следующие значения шага при различных значениях количества зубцов: Z — количество зубцов, ш — угловой шаг (табл. 4). Очень часто в принтерах применяют двигатели с количеством зубцов 48, поэтому при расчете по формуле, приведенной выше можно получить значение углового шага = 1.86°. Значение углового шага некоторыми производителями двигателей указывается непосредственно на ярлыке двигателя.
Типичным примером микросхем управления шаговыми двигателями можно считать драйвер SMA7029M (рис.15 и 16). Микросхема SMA7029M обеспечивает возможность управления униполярными шаговыми двигателями различных типов: 4-х фазными и 2-х фазными. Микросхема позволяет управлять двигателями с высокой скоростью и обеспечивает, высокий КПД двигателя. Для переключения фаз используются встроенные полевые мощные транзисторы. Микросхема поддерживает работу с максимальным напряжением питания до 46В и имеет выходы, рассчитанные на высокие напряжения и большие токи.
Рис. 9. Драйвер SMA7029M
Рис. 10. Типовое включение на примере одного канала (В)
Встроенные полевые транзисторы, имеющие пробивное напряжение более 100В, позволяют обеспечить очень малое сопротивление цепи во включенном состоянии и очень высокую частоту переключения. В составе микросхемы имеются встроенные защитные диоды. Микросхема SMA7029M обеспечивает регулировку величины тока через фазы шагового двигателя, а также обеспечивает защиту от превышения этого тока сверх заданного значения. Регулировка тока осуществляется методом широтно-импульсной модуляции — ШИМ (PWM). Величина тока задается путем выбора внешнего токового датчика, в качестве которого используется резистор с очень малым сопротивлением (менее 1 Ом). Кроме того, величина тока может быть задана выбором источника опорного напряжения, выбором делителя в цепи опорного напряжения, выбором параметров частотозадающей RC — цепи. RC — цепь позволяет ограничивать время паузы между импульсами. Все входы микросхемы совместимы с микропроцессорами и логикой на 5В. Микросхема SMA7029M позволяет обеспечивать управление различными типами двигателей в различных режимах. В каждом из режимов работы необходимо создавать различную последовательность входных управляющих сигналов.
Данная микросхема может обеспечить работу шагового двигателя в режиме волнового управления (WAVE DRIVE). Кроме того, двигатель может использоваться для управления двигателем в режиме полного шага (FULL STEP). Данную микросхему вполне можно приспособить и для применения в режиме полушага (HALF STEP), только для этого потребуется усложнить схему управления драйвером двигателя в SMA7029M.