Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощные шаговые двигатели Комментировать

Мощные шаговые двигатели Комментировать

В отличие от устройств периферии, медицинских установок и прикладной робототехники в промышленных областях предъявляются особенные требования к силовым установкам, в состав которых обязательно входят высокопроизводительные шаговые двигатели.

Особенно востребованы данные установки в следующих областях промышленности с компьютеризованными системами управления:

  • Производство автомобильной техники
  • Фрезерные станки
  • Гравировальные машины
  • Крупные роботизированные системы
  • Этикетировочное оборудование
  • Полиграфия
  • Радиолокационные приборы и др.

NEMA 42 FL110STH150-6504 A Шаговый двигатель

NEMA 42 FL110STH201-8004 A Шаговый двигатель

NEMA 42 FL110STH99-5504 A Шаговый двигатель

NEMA 51 FL130BYG-2501 Шаговый двигатель

NEMA 51 FL130BYG-2502 Шаговый двигатель

NEMA 51 FL130BYG-2503 Шаговый двигатель

Выбираем мощный шаговый двигатель

В отличии от классических машин, мощность которых подбирается по принципу чем больше указано значение мощности на шильде (Ватт или килоВатт), тем выше производительность данного прибора, в области шаговых двигателей привычный для многих способ не работает.

Расчет производительности мощных шаговых двигателей напрямую связан с несколькими рабочими параметрами системы: выдаваемого тока на обмотках, напряжения питания; таким образом ключевой характеристикой при выборе производительного ШД является крутящий момент.

Какой мощный шаговый двигатель выбрать

Если вы ищите подходящую мощную силовую установку для работы в области деревообработки и обработки камня, работы с алюминием или пластмассой, то рекомендуем обратить внимание на гибридную модель FL86. Она обладает динамичными характеристиками в купе с привлекательной ценой:

  • Высокий крутящий момент
  • Высокая точность
  • Широкий диапазон рабочих скоростей
  • Плавная настройка мощности
  • Быстрый запуск и остановка
  • Низкий уровень шума
  • Продолжительный режим работы

Система подходит для эксплуатации в классических производственных условиях в температурном диапазоне от -20 до +40 градусов Цельсия и влажности воздуха не более 80%.

Другими высокомерными шаговыми двигателями являются FL110, FL130. Самые крупные и мощные силовые установки подходят для использования в области машиностроения, металлообработки, сельском хозяйстве и других промобластях, требующих продолжительной непрерывной работы.

Генератор сигналов ШИМ/ИМПУЛЬС для ручного управления шаговым мотором

  • Описание товара

    Модуль генератора прямоугольных сигналов ШИМ/ИМПУЛЬС для ручного управления шаговым мотором

    Специализированная модель генератора прямоугольных импульсов на микросхеме NE555 предназначена для управления одним шаговым двигателем, подключенному к драйверу, без необходимости использования внешнего блока с ЧПУ. Модуль представляет из себя упрощённую «замену» любому типу контроллера ЧПУ, имеет привычный для большинства распространённых драйверов шаговых двигателей интерфейс PUL/DIR/ENA, и предоставляет возможность пользователю самостоятельно, в ручном режиме, осуществлять запуск и остановку шагового двигателя, изменять скорость и направление вращения вала мотора.

    В особенности модуля генератора входят два режима работы: частотный и ШИМ, а также присутствует настройка генерируемой частоты импульсов в трёх различных диапазонах LOW (82 Гц — 2.3 кГц), MED (590 Гц — 15.8 кГц), HIGH (5.8 кГц — 127 кГц). Указанные производителем значения частоты приблизительны и могут незначительно отличаться. В частотном режиме, рабочий цикл изменяется поворотом потенциометра по часовой или против часовой стрелки в диапазоне 38-66%, в режиме ШИМ — от 3 до 96%. Для смены режимов работы и выбора требуемой частоты, на плате установлены выводы-перемычки. Модуль допускает подключение драйверов шагового двигателя с оптически развязанными входами управления, соединяемых по схемам с общим анодом или общим катодом. Светодиодная индикация модуля отображает основные функции и наличие напряжения, питающего цепи генератора.

    Технические характеристики

    • Питание: 5-12В или 15-160В, постоянное напряжение
    • Интерфейс: PUL/DIR/ENA
    • Регулятор скорости вращения
    • Кнопки управления: пуск/стоп, направление вращения вала
    • Режимы: частотный/ШИМ
    • Диапазон частот: 82Гц — 127кГц
    • Светодиодная индикация: питание, направление, пуск/стоп
    • Размеры: 73х51х37мм
    • Вес: 50гр

    Примечание. Не допускается! одновременная подача питания к двум клеммным группам входного напряжения, «5-12В» и «15-160В»

    Пример подключения генератора ШИМ/ИМПУЛЬС к драйверу шагового мотора TB6560 по схеме с общим анодом (+):

    Оценка маломощных бесколлекторных, коллекторных и шаговых двигателей и их драйверов

    20 сентября 2018

    Какой тип маломощного двигателя постоянного тока выбрать из трех существующих? Это определяется поставленной задачей, но, вне зависимости от выбора, у STMicroelectronics найдется микросхема драйвера для любого из них.

    Диапазон применений маломощных двигателей постоянного тока (DC) расширился в результате многих факторов. Во-первых, двигатели стали более эффективными и мощными благодаря новым магнитным материалам. Во-вторых, в связи с использованием интеллектуальных микросхем с интегрированными полевыми транзисторами (FET) управление двигателями стало более легким. В-третьих, несмотря на то, что в большинстве приложений интернета вещей (IoT) лишь регистрируются те или иные состояния, а потребности в движении не возникает, рост разнообразия приложений IoT привел к необходимости малогабаритных двигателей.

    Что такое маломощный двигатель постоянного тока? Официального определения или стандарта нет, но универсальное понимание в индустрии таково: двигатель со среднеквадратичным (RMS) значением тока привода до 1 А и пиковым значением тока 2 А считается маломощным устройством. Эти цифры могут показаться достаточно большими по сравнению с потреблением соответствующей электроникой миллиамперных токов. Однако многие из вышеуказанных двигателей используются в приложениях с малым коэффициентом заполнения, чьи совокупные потребности в энергии довольно скромны, даже если собственные требования приложений к максимальной мощности намного больше, чем необходимо их электронной составляющей.

    Области применения маломощных двигателей разнообразны: от электроники для развлечений – до стандартной продукции и изделий для ответственного применения. Вот несколько сфер, где они используются:

    • беспроводные системы Smart HVAC;
    • регулировка и тонкая настройка производственных процессов;
    • научное приборостроение;
    • игры и развлечения;
    • роботизированные приводы;
    • медицинское оборудование, например — для позиционирования зондов, для контроля потока жидкости и для лабораторной диагностики.

    Три основные топологии двигателя

    Три часто используемые конфигурации маломощных DC-двигателей – коллекторные, бесколлекторные (BLDC) и шаговые. Каждый из них работает благодаря взаимодействию между токами в катушках (или обмотках) и постоянными магнитами (в большинстве конструкций), что приводит к притяжению/отталкиванию магнитного поля, вызывающему вращение. Все три вида двигателей имеют некоторые сходства, но отличаются методом управления переключением тока, протекающего через обмотки ротора и статора.

    Они также отличаются возможностью выполнения определенных задач, качеством этого выполнения и гибкостью управления.

    • Исторически первым был двигатель коллекторного типа. По мере вращения ротора контактные щетки, представляющие собой сплошные контакты, состоящие, как правило, из графита, касаются соответствующих областей на роторе (рисунок 1). По мере вращения ротора изменение точек контакта щетки вызывает изменение направления потока тока и, следовательно, магнитного поля. Затем взаимодействие магнитного поля между ротором и статором меняется на противоположное, что вынуждает ротор продолжать движение.

    Рис. 1. Коллекторный двигатель постоянного тока

    Данная механическая схема концептуально проста. Однако ее недостаток в том, что щетки изнашиваются и нуждаются в замене, реализация интеллектуального управления сложна, потому что переключить данный двигатель довольно трудно, к тому же, щетки создают электромагнитные помехи (EMI), также известные как радиочастотные помехи (RFI).

    В простейшем варианте коллекторный двигатель не нуждается в электронном управлении – он просто работает в зависимости от токовой и механической нагрузок. В других вариантах силовая шина двигателя включается и выключается при помощи транзисторной схемы, что является простейшим вариантом управления. Также возможно использование микросхемы-драйвера для повышения производительности и обеспечения контроля над скоростью и вращательным моментом.

    • В двигателе BLDC механическая коммутация заменена электрической с использованием транзисторов. Чаще всего используются МОП-транзисторы (MOSFET), которые управляются драйвером затвора (в некоторых конструкциях используются биполярные транзисторы с изолированным затвором – IGBT). Отдельный контроллер управляет точным переключением катушки в момент, необходимый для поддержания вращения двигателя на желаемой скорости (рисунок 2).
    Читать еще:  Асинхронный двигатель с короткозамкнутым ротором механическая характеристика

    Рис. 2. Бесколлекторный двигатель постоянного тока

    Примечание: двигатели BLDC иногда называют электронно-коммутируемыми (EC) двигателями, что является более точным определением.

    В BLDC магнитное поле ротора присутствует всегда, оно генерируется постоянными магнитами. Когда ток направляется от одной фазы двигателя к другой, магнитные поля объединяются, генерируя изменяющееся поле статора.

    Управление двигателем производится не только при помощи электроники. Вместо этого переключение может быть сформировано в драйвере затвора с контролируемым временем нарастания и спада для уменьшения EMI/RFI. Основная проблема заключается в том, что более мягкое переключение приводит к потере мощности и снижению КПД двигателя, и в этой ситуации разработчику необходимо найти максимально компромиссное решение. Некоторые новые драйверы затвора используют множество сложных и тонких трюков, чтобы облегчить эту задачу.

    • Шаговый двигатель использует концепцию двигателя BLDC, включая в себя большое количество катушек (или полюсов), расположенных по периферии двигателя (рисунок 3). Путем поочередного включения и выключения этих полюсов индуцируется шаг и вращение ротора в прямом или обратном направлении.

    Рис. 3. Шаговый двигатель

    Полюсов может быть и 16, и 128 (или более), в зависимости от требуемой точности вращения, прямо пропорциональной их количеству. Шаговые двигатели доступны в однополярных двухфазных и биполярных двух-, трех- и пятифазных конфигурациях. Самый распространенный из них – биполярный двухфазный двигатель.

    В шаговом двигателе магнитное поле ротора генерируется постоянным магнитом, а магнитное поле статора – током, протекающим в определенной фазе. В результате ротор будет выравниваться в соответствии с магнитным полем статора, чтобы достичь заданного положения.

    Шаговый двигатель хорошо подходит для задач, где необходимы быстрые остановка/запуск, позиционирование или движение назад/вперед, однако он не подойдет для долговременной непрерывной работы. Он часто используется в принтерах и приборах с поэтапным позиционированием (это только два из его многочисленных применений). Несмотря на то, что точность позиционирования зависит от числа полюсов, использование усовершенствованного метода, в котором смежные полюсы включаются частично (так называемый «микрошаг»), позволяет более точно управлять переключением и позиционированием.

    Для управления двигателем необходима как мощность, так и стратегия

    Полная система управления двигателем состоит из нескольких функциональных блоков (рисунок 4):

    Рис. 4. Путь сигнала управления двигателем

    • Контроллер. Контроллер решает, что мотор должен делать для выполнения текущей задачи в данный момент времени, и определяет, какая мощность в какой момент необходима для полюсов. Он может представлять собой отдельную интегральную схему с фиксированной функцией или быть частью прошивки более крупной системы.

    Если к двигателю подключают контур обратной связи, как сейчас делают многие производители, добавляя датчик положения на вал ротора, то контроллер также оценивает положение и скорость двигателя и определяет соответствующие изменения, необходимые для управления мощностью.

    • Выходной сигнал контроллера подается на драйвер управления затвором, который преобразует низковольтные и слаботоковые команды включения/выключения в более высокие токи (и часто более высокие напряжения), необходимые МОП-транзистору (или IGBT). Довольно часто драйвер гальванически изолирован.
    • МОП-транзисторы (или IGBT) являются фактическими ключами питания, которые управляют подачей тока на катушки двигателя.
    • Катушки двигателя. Ток, протекающий через обмотки катушки двигателя, создает электромагнитное поле, которое взаимодействует со стационарными магнитами в двигателе, заставляя его начать вращение.

    Сходства и различия интегральных схем для управления двигателем

    Преимущество маломощных двигателей, помимо их скромных потребностей в токе и напряжении, заключается в том, что драйверы затвора MOSFET могут быть интегрированы с контроллерами и оптимизированы для конкретных потребностей. Рассмотрим трио соответствующих предложений от STMicroelectronics. Эти три микросхемы от ST имеют множество базовых характеристик, которые позволяют применять их совместно с различными типами двигателей. Помимо этого, они облегчают моделирование и просты в изучении.

    Вот несколько преимуществ, которыми обладают эти изделия:

    • максимальная интеграция с использованием интерфейса микроконтроллера (MCU), логики управления, драйвера и моста МОП-транзистора (требуется только несколько пассивных компонентов и нет необходимости во внешних активных компонентах);
    • малое рабочее напряжение 1,8…10 В, которое хорошо подходит для низковольтных двигателей, в особенности – для работающих от небольших аккумуляторных батарей;
    • высокий выходной ток до 1,3 A (RMS) и 2 A (пиковое значение) для каждого выхода;
    • энергопотребление в режиме ожидания до 80 нA;
    • повышенная надежность благодаря блокировке при падении напряжения (UVLO), тепловой защите и защите от перегрузки по току;
    • небольшой QFN-корпус размером 3×3 мм.

    Рассмотрим сходства и различия трех данных микросхем для управления двигателем. STSPIN220, предназначенная для шаговых двигателей, объединяет в себе логику управления, высокую эффективность и малое сопротивление «сток-исток» открытого канала RDS(ON) (рисунок 5). Контроллер реализует управление токовым режимом с помощью широтно-импульсной модуляции (PWM) с программируемым временем выключения. STSPIN220 поддерживает разрешение 256 микрошагов на один полный шаг, что позволяет сделать движение максимально плавным.

    Рис. 5. Микросхема STSPIN220 для управления шаговым двигателем

    Микросхемы, аналогичные модели STSPIN220:

    • STSPIN230 – монолитный драйвер для трехфазных двигателей BLDC;
    • STSPIN240 – монолитный драйвер для двух независимых двигателей постоянного тока;
    • STSPIN250 – монолитный драйвер для одного двигателя постоянного тока.

    Примечание: драйвер STSPIN250 предназначен для одного двигателя в отличие от двухмоторного драйвера STSPIN240. STSPIN250 может обеспечивать более высокий ток 2,6 А (среднеквадратичное значение) и 4 А (пиковое значение).

    Все эти интегральные схемы имеют максимально схожий внешний интерфейс и оперативные команды, функционально отличаются лишь их интерфейсы со стороны двигателя.

    Делаем выбор

    Решение о выборе типа двигателя является простым и сложным одновременно. Даже при существовании основных принципов выбора могут возникнуть ситуации, которые будут исключением из правил. Каждый тип двигателя отличается характеристиками скорости, угла поворота против крутящего момента, остановки. При выборе необходимо сопоставить желаемые функции и ограничения готового устройства с параметрами двигателя.

    В большинстве случаев коллекторный и бесколлекторный двигатели не подходят для решений, в которых необходим шаговый вариант. Он лучше подходит для постоянного чередования запуска/остановки/позиционирования, в то время как первые два более пригодны для непрерывной работы. При выборе между коллекторным и бесколлекторным двигателями рассмотрите следующие аспекты:

    • коллекторные двигатели имеют меньший срок службы, чем двигатели BLDC; в первом случае срок службы зависит от износа подшипников и щеточного механизма, во втором срок ограничен только износом подшипников. Кроме того, щетки, быстро собирающие проводящую пыль, могут загрязнять другие поверхности;
    • высококачественные коллекторные двигатели могут достигать скорости 10 000 об/мин, в то время как конструкции двигателей BLDC позволяют увеличить эту скорость в 5 или даже в 10 раз;
    • коллекторные двигатели могут работать непосредственно от источника питания и, следовательно, нуждаются только в двух проводах, в то время как двигатели BLDC нуждаются в электронной коммутации, и в этом случае необходимо не менее трех проводов плюс провода датчика;
    • КПД обоих типов примерно одинаков, а вот источники потерь в них различаются. Для коллекторных двигателей большая их часть возникает в обмотках и при трении, связанном со щеточным механизмом, в то время как двигатели BLDC испытывают те же потери в обмотках, плюс дополнительные потери от вихревых токов, которые растут с увеличением скорости;
    • схема управления для шаговых двигателей изначально является гораздо более сложной, чем для коллекторных, но новые интегральные схемы, например, разработки STMicroelectronics, практически устраняют эти различия;
    • маломощный коллекторный двигатель, например, для недорогой игрушки, может быть наиболее экономичным решением в плане электропроводки и электроники управления (если она есть), но при этом он может обеспечить весьма ограниченную производительность.
    Читать еще:  Что такое опора двигателя сузуки гранд витара

    Заключение

    Бессчетное количество информационных справок о двигателях охватывает академическую теорию, возможные реализации, варианты использования, механические, электрические и термические проблемы, функции привода и элементы управления от простейших до продвинутых. Одним из полезных источников является «An Introduction to Electric Motors» от ST. Для более глубокого ознакомления с шаговыми двигателями и микрошагами, которые не так интуитивно понятны, как коллекторные и бесколлекторные двигатели, смотрите «Application Note AN4923 STSPIN220: Step-Mode Selection and On-the-Fly Switching to Full-Step».

    БТГ: БЕЗ ТОПЛИВА — БЕЗ ТАЙНЫ

    Материал раскрывающий полувековую тайну устройства, которое является самым простым генератором без топлива. Впервые информация о таком устройстве была обнародована в США, о системе аварийного освещения, которую контрабандой вывезли, два военнослужащих Армии США, на территорию Соединенных Штатов. Это было простое небольшое устройство, которому не нужны были ветер, топливо или другой источник. У него был простой коллекторный переключатель, при этом устройство без перерыва обеспечивало горение нескольких лампочек.

    Что за странное устройство было обнаружено двумя американскими солдатами в заброшенном доме во время зачистки в Германии после Второй мировой войны и контрабандой обратно в США? Устройство без входных труб или проводов, на которое им пришлось принудительно наступать, чтобы остановить его работу. В этот момент свет погас, и комната погрузилась во тьму.
    После 50-летней загадки, с последними оставшимися частями оборудования на лабораторном столе, Джон Бедини рассказывает историю, и что это за история, показывая, как еще одно проверенное устройство СверхЕдинства, было почти потеряно для истории.
    Аварийный домашний электрический генератор с автономным питанием, который производился в нацистской Германии из деталей Volkswagen, а затем продавался в течение нескольких лет в Соединенных Штатах!
    Джон Бедини показывает, как это работает, и не только указывает направление его реконструкции, но также подчеркивает, как и почему не удалось выполнить репликацию.
    Примечание: через некоторое время после первоначального выпуска этого фильма в 2009 году Джон Бедини дал нам отснятый материал, который ему передал оригинальный исследователь.

    Ранее из других источников, я узнал, о якобы появившихся в конце войны устройстве, без аккумуляторного питания для переносных радиостанций, у групп глубинной разведки Аbver. Данные устройства были модернизацией Умформеров (механических преобразователей). Оные преобразователи широко применялись в Германской армии

    И последняя непроверенная информация, о существовании двух трофейных подводных лодок Германии, которые перегоняли, после войны в Советский Союз. Информация, якобы появилась от инженера электрика, который принимал в этой операции участие. С его слов, лодка была полностью электрическая, силовой установкой которой, была спарка Мотор — Генератор постоянного тока. При этом механического соединения, между мотором и генератором не было. Мотор получал энергию от генератора, который при увеличении оборотов мотора (передающего крутящий момент на гребной винт), в ответ увеличивал обороты ротора. Энергию генератор брал из неоткуда. Это можно считать фантастической сказкой, но какой тип лодки перегоняли в информации нет и намека. Справедливости ради, думаю что такую установку могли сделать на малый тип субмарины. Такие в Германии, как раз начали развивать к концу войны.

    Подводная субмарина классаBiber «Бибера» имела обтекаемую форму и была усилена за счет четырех прочных переборок, деливших лодку на пять отсеков, и нескольких плоских ребер жесткости с расстоянием между ними около 25 см. В первом отсеке «Бибера» находилась носовая цистерна главного балласта, во втором — размещался центральный пост управления с местом водителя. Здесь же были сосредоточены все рычаги и приборы управления субмариной, а также баллоны со сжатым воздухом для продувки цистерн главного балласта, кислородный баллон с дыхательным аппаратом, аккумуляторные батареи, топливная цистерна и бензопроводы. Двигатель находился между второй и третьей прочными переборками — в третьем отсеке, а электромотор для подводного хода — в четвертом отсеке. В пятом отсеке — находилась кормовая цистерна главного балласта. Для подводного хода использовался 13-сильный электромотор, питаемый от трех групп аккумуляторов типа 13 Т2106: две — по 26 элементов и одна из двух батарей по 13 элементов. В качестве движителя на субмарине использовался гребной винт диаметром 47 см. Вертикальный руль и кормовые горизонтальные рули выполнялись из дерева и приводились в движение при помощи посаженных на одну ось двух колес-штурвалов. Экипаж подводной лодки состоял из одного человека. Место водителя размещалось во втором отсеке субмарины. Опасность для водителя подводной лодки представлял ядовитый выхлоп от бензинового двигателя надводного хода. Причем количество угарного газа было столь велико, что через 45 минут работы двигателя при закрытом рубочном люке, его концентрация внутри корабля становилась критической. Водитель «Бибера» мог в любую минуту потерять сознание от отравления выхлопными газами. Поэтому для вывода углекислого газа водитель должен был надеть на лицо маску дыхательного аппарата и производить выдох через шланг, ведущий в оксилитовый патрон. Всего таких патронов у водителя было три, каждый из них рассчитан на 7,5 часов. Подаваемого определенными дозами кислорода хватало на 20 часов подводного плавания. Развитие конструкции Biber привело к появлению подводной лодки Biber II. Корпус отличался большей длиной (толщина обшивки 4 мм) — Экипаж подводного корабля — два человека. Проект не вышел из «бумажной» стадии. Проект третьей модели Biber III, так же имел место быть. Испытания модели начались в январе 1945 году и были завершены в конце марта 1945 года, но быстро откатывающийся фронт, не позволил завершить разработку данного проекта. Дизель крутил генератор, только в надводном положении. Могли ли немецкие инженеры, сконструировать систему получения электрического тока, по без топливному принципу РОТОВЕРТОРа? Большую установку на мегаватты нет, а малую для малого класса лодок данного типа, вполне. Полагаю, информация эта незаслуженно отнесена в класс «Мифов Второй Мировой Войны». Ведь задача была не лампочки зажигать. Размещение вместо дизельного/бензинового агрегата, Самоходного электрического генератора, уменьшает емкость батарей, увеличивает запас других составляющих жизнеобеспечения экипажа, идеальное оружие в подводной войне. Пример при изменении на рисунке, по сути ничего не меняется в производственной линии, только оптимизируется.

    История о моторе Стовбуненко (г. Ленинград), который, он установил на свой Москвич 401 модели, и целый день (условно но не менее 5 часов) ездил с журналистом молодежной газеты «СМЕНА» в 1959 году. Источником энергии для его мотора были два стандартных стартовых АКБ. Просто уточните, какие были тогда АКБ. При этом заряд в АКБ практически не снизился. Думаю, что АКБ были энергетическим, пополняемым балластом. После данной поездки, материал о данном эксперименте, так и не вошел в выпуск Молодежной Газеты. Решением ВПК СССР, все изобретения автора, кроме первого шагового мотора с зубчатым ротором, были засекречены. Думаю, какая была реальная конструкция мотора установленная на старенький Москвич мы можем только догадываться. Потом были вот такие публикации с оценкой других изобретателей:

    Предлагаю электродвигатель постоянного тока новой конструкции с переключающимися электромагнитами на статоре и текстолитовым ротором с железными вкладышами, расположенными на равных расстояниях один от другого по образующим цилиндра. Число вкладышей равно числу электромагнитов.Снятая мною нагрузочная характеристика этого электродвигателя показывает, что мощность, затрачиваемая на его торможение, при постоянном числе оборотов более чем в три раза превосходит подводимую к нему мощность. Ф. Хорев г. Саратов

    Предложенный Вами электродвигатель принципиально не нов. Такие машины применялись в качестве учебного пособия в средних школах в начале XX века.
    Однако полученные Вами результаты совершенно неожиданны.
    Выходит, что, заставив электродвигатель вращать небольшую динамо-машину, можно получить такое количество электроэнергии, которого будет достаточно не только для приведения самого электродвигателя во вращение, но и для использования ее в других токоприемниках. То есть получился так называемый вечный двигатель, над изобретением которого, как известно, напрасно бились несколько веков пытливые умы.
    Конечно, трудно, не присутствуя на испытании Вашего электродвигателя, установить, где именно при испытании вкралась досадная ошибка, приведшая Вас к заведомо неточным результатам. Нам кажется, что это произошло при определении тормозящей силы. Конечно, помочь Вам в уточнении полученных нагрузочных характеристик можно лишь имея подробный эскиз тормозного устройства с размерами и величинами сил, входящими в расчетную формулу.
    Для того чтобы Вам самому себя быстрее убедить в неточности полученных нагрузочных характеристик, рекомендуем Ваш электродвигатель заставить работать, как предлагалось выше. Вы тогда легко убедитесь, что мощность, вырабатываемая динамо-машиной, будет недостаточна для приведения в действие предложенного Вами двигателя, то есть никакого «вечного двигателя» не получится.

    Читать еще:  Газель заводиться работает и глохнет двигатель 405

    Как бы, все это уже пропаганда. Не может быть и все. Вся вторая половина ХХ века, и начало уже ХХІ, идет информационная операция, по сокрытию реальных устройств и их возможностей.

    Так начиналась современная эра устройств Свободной Энергии, по типу мотор — генератор 2 в 1 (РОТОВЕРТЕР). Исследования Рона Кола, конструкции Роберта Адамса, Динамо Билла Мюллера, Мотор-Генератор Джона Бедини, Моторы и Генераторы Джо Флинна и других, опираются на эффект, который был заложен в том простом устройстве из Германии. Устройства могут достигать Эффективности более 1000%. Все это по классическим принципам физики, рассчитывается классическими формулами. Думаю, из-за сильной цензуры в Советском Союзе изобретений и разработок в этой области, было не меньше.

    Классическая физика не отрицает подобные устройства, их отрицает «традиционное сфокусированное образование», и мироеды, в основе власти которых, является контроль за производством и продажами энергии. Устройство выдает постоянный ток, и чем больше ток в цепи потребителя, тем больше обороты магнитного ротора. Вам ничего это не напоминает, в фантастических рассказах об устройствах из Германии, Второй Мировой.

    Как говорил Роберт Адамс, собрать может даже школьник (условно конечно, ориентировано на простоту метода, технологию изготовления элементов для оборотистых изделий еще никто не отменял).

    Устройство в конечном виде, заменяет или дополняет: ветроустановки, солнечные панели. Ориентировано для зарядки АКБ или работы с инвертором на фиксированную (условно) нагрузку. Возможности сечения проводов так же никто не отменял, как и закон Ома.
    Материал, это аналитический и творческий труд, многолетних попыток разгадать секрет Мотора Адамса, Бедини. Конструкцию Мюллера вообще воспринимал как двигатель. В итоге отработки своей идеи UNI-генератора выстроилась схема, для меня стало очевидным, что и остальные машины работают по обнаруженному принципу. В материале рассматривается Устройство Слободяна.

    Мы изобретаем всегда то, что уже изобретено и спрятано.

    Не стройте иллюзий в мощностях, размер имеет значение.

    К примеру берем «обывательские» показатели 10 кВт, выходной мощности, установки. Делаем нехитрые расчеты: за 1 час работы устройство генерирует 10 кВт*часов; за 24 часа — 240 кВт*ч; за 30 дней (по 24 часа) это уже будет 7200 кВт*часов [7,2 МВт*часов]! Заглядываем в свою платежную квитанцию оплаты электроэнергии за календарный месяц и смотрим сколько кВт*часов к оплате накрутил вам счетчик. Допустим у вас электроплита и нагревательный электрический бойлерный нагреватель. Показатель в районе 800 кВт *часов [0,8 МВт*часов]. Вопрос а что делать, с остальной энергией?, её впрок не запасешься в двухкомнатной квартире на .. дцатом этаже, или вам потребуется большущий аккумулятор размером с вашу квартиру. При этом каждый месяц будет только прибывать. Продать вы ее никогда не сможете, мироеды определили для Вас, что вы покупатель, и должны ДОИТЬСЯ! Считаем дальше, а сколько же надо?

    Определим средние показатели: 800 кВт*часов / 30 дней = [26,7] 27 кВт*часов за сутки Ваш средний показатель. 27 кВт*ч / 24 часа = 1,125 кВт*часа за ОДИН час. Это средний показатель. Естественно потребление идет неравномерно и стартовые пики для мотора холодильника и других приборов рассчитываются до 10 кВт мощности суммарно, но это доли секунды. Потом одновременное включение приборов и прочее. Самое интересное, что основными пунктами потребления, у вас это водонагреватель и холодильник. Посмотрите их мощность. Средняя мощность холодильника колеблется между 100 и 200 Вт/час (в состоянии спокойствия), максимальная – 300 Вт/час (во время работы компрессора), то есть средний показатель выходит около 250 Вт. Не забывайте, что холодильник, включенный в розетку работает круглосуточно. Можете посмотреть и на другие показатели электроприборов ССЫЛКА. Напрямую соединять потребитель с генератором к примеру 220В/ 50Гц однофазный у вас нужно иметь достаточную мощность для пиковых пусков, при этом обеспечить дабы напряжение не проседало ниже 220В AC. Такой механизм отработан через Инвертор сети и буферный накопитель в виде Аккумуляторных Батарей соответствующей мощности. Для стабильной работы нам достаточно иметь выходную мощность Автономного Генерирующего Устройства на Постоянных Магнитах с показателем 1,3 -1,4 кВт. К нему расчетную емкость АКБ, она будет в разы, и еще раз в разы меньше чем для устройства на солнечных панелях. Как может выглядеть сеть домашняя на .. дцатом этаже, показано на рисунке: (для увеличения нажмите на рисунок курсором и кнопкой Enter)

    Для своего дома аналогично. возможна интеграция с солнечными панелями, или обустройство лже-панелей с целью сокрытия реального источника своей энергии. Вам же спокойнее.

    Материал продается как есть, гарантирую вы будете удивлены оригинальностью решений! Сегодня все имеет цену, материальный товар и информация о технологиях, и чем она проще тем ценнее. Это я альтруист раздаю по смешной цене. Пошаговая инструкция стоит несравнимо дороже. Ни кому не советую делится информацией если стали обладателем устройства, поверьте это в первую очередь вам безопаснее. Устройство которое в ролике. не имело мощного выхода не более 150-300 Ватт но оно было интегрировано в энергосистему, пусть и на несколько розеток. Метод описанный в книге, в зависимости от размера элементов свободно можно изготовить до 2 кВт выходной мощности, но вы столкнетесь с высокооборотистым ротором, на коленке вы его не сделаете.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector