Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Узнай все про автомобили ремонт советы

Узнай все про автомобили ремонт советы.

Автомобильный портал: советы, видео, инструкции для автовладельцев

Расчет мощности двигателя

Мощность – важный технический параметр двигателя внутреннего сгорания. Это влияет на динамику ускорения, максимальную скорость и эластичность двигателя. Это также влияет на размер транспортного налога, который обязан платить практически каждый автомобилист.

Чтобы узнать мощность вашего двигателя, вам понадобятся специальные формулы и методы расчета. Калькулятор мощности двигателя автомобиля, приведенный ниже в нашей статье, также может вам помочь.

Расчет мощности двигателя: методики и необходимые формулы

Некоторым людям нужно рассчитать лошадиные силы двигателя, чтобы рассчитать налог на машину. Для некоторых важно рассчитать мощность двигателя компрессора самостоятельно. Для некоторых, важно знать точную лошадиную силу автомобиля, чтобы проверить ее на соответствие заявленным лошадиным силам. В целом, расчет мощности и выбор двигателя – два неразрывных процесса.

Это не единственные причины, по которым автомобилисты пытаются самостоятельно рассчитать мощность двигателя своих автомобилей. Довольно сложно сделать это, не имея необходимых формул для расчета. Они будут приведены в этой статье, чтобы каждый автолюбитель мог сам рассчитать, насколько реальна мощность двигателя его автомобиля.

Введение

Существует как минимум четыре общепринятых метода расчета мощности двигателя внутреннего сгорания. В этих методах используются следующие параметры моторного блока:

  1. Оборот.
  2. Громкость.
  3. Пара.
  4. Фактическое давление внутри камеры сгорания.

Для расчетов также необходимо знать вес автомобиля и время разгона при 100 км/ч.

Каждая из приведенных ниже формул расчета мощности двигателя имеет определенный предел погрешности и не может дать 100% точный результат. Это всегда следует учитывать при анализе полученных данных.

Если рассчитать мощность по всем формулам, которые будут описаны в статье, то можно найти среднее значение реальной мощности двигателя, а несоответствие с реальным результатом будет не более 10%.

Если пренебречь различными научными тонкостями, связанными с определением технических понятий, то можно сказать, что мощность – это энергия, вырабатываемая двигательным агрегатом и преобразуемая в крутящий момент на валу. При этом мощность является переменной величиной, а ее максимальное значение достигается при определенной частоте вращения вала (указывается в паспортных данных).

В современных двигателях внутреннего сгорания максимальная мощность достигается при 5,5-6,6 тыс. об/мин. Она наблюдается при наибольшем значении среднего эффективного давления в цилиндрах. Значение этого давления зависит от следующих параметров:

  • качество топливной смеси;
  • полнота сгорания;
  • утечка топлива.

Мощность, как физическая величина, измеряется в ваттах, а в автомобильной промышленности – в лошадиных силах. Расчеты, описанные в методах, приведенных ниже, дадут результаты в киловаттах, затем их нужно будет преобразовать в лошадиные силы с помощью специального калькулятора.

Мощность через крутящий момент

Одним из способов расчета мощности является определение соотношения между крутящим моментом двигателя и числом оборотов в минуту.

Любой крутящий момент в физике является результатом действия силы на его плечо. Крутящий момент – это продукт силы, которую двигатель может развить для преодоления сопротивления нагрузки, умноженной на плечо его применения. Именно этот параметр определяет скорость, при которой двигатель достигает максимальной мощности.

Крутящий момент можно определить как отношение произведения рабочего объема к среднему действующему давлению в камере сгорания и 0,12566 (постоянное):

  • M = (V рабочий * P КПД)/0,12566, где V рабочий – объем двигателя [л], P КПД – эффективное давление в камере сгорания [бар].

Частота вращения двигателя описывает частоту вращения вала двигателя.

Используя значения крутящего момента и числа оборотов двигателя, можно рассчитать мощность двигателя по следующей формуле:

  • P = (M * n)/9549, где M – вращающий момент [Нм], n – частота вращения вала [об/мин], 9549 – соотношение сторон.

Расчетная мощность измеряется в киловаттах. Для преобразования вычисленного значения в лошадиную силу умножьте результат на коэффициент пропорциональности 1,36.

Этот метод расчета состоит из использования только двух элементарных формул, поэтому он считается одним из самых простых. Однако это можно сделать еще проще и использовать онлайн-калькулятор, где необходимо ввести некоторые данные об автомобиле и его двигательном агрегате.

Стоит отметить, что эта формула расчета мощности двигателя позволяет рассчитать только ту мощность, которая выходит из двигателя, а не ту, которая фактически достигает колес автомобиля. Какая разница? В то время как мощность (если думать о ней как о потоке) достигает колес, она испытывает потери, например, в случае передачи. Боковые потребители, такие как кондиционер или генератор переменного тока, также играют определенную роль. Нельзя упускать из виду потери при переливе, сопротивление качению и сопротивление волоку.

Этот недостаток частично компенсируется использованием других формул расчета.

Расчет мощности двигателя: методики и необходимые формулы

Мощность двигателя – это энергия, которая вырабатывается внутри двигателя внутреннего сгорания во время его работы. Этот индикатор очень важен для любого автомобиля, и многие водители руководствуются им при выборе автомобиля. Это может быть определено различными способами. Давайте перечислим основные методы:

  • Сквозь обороты и крутящий момент.
  • Для тома ICE.
  • На воздушном потоке.
  • По весу и времени разгона до 60 миль в час.
  • С точки зрения производительности впрыскивающих форсунок.

Первичной единицей измерения мощности являются ватты, но иногда они выражаются в лошадиных силах. Между этими устройствами существует простая корреляция, поэтому при необходимости лошадиные силы могут быть легко преобразованы в ватты (и наоборот).

В нашей статье мы рассмотрим основные формулы определения лошадиных сил и научимся преобразовывать лошадиные силы в ватты.

Расчет через крутящий момент

Этот метод расчета является базовым. Для измерения мощности необходимо знать два технических параметра: крутящий момент и скорость двигателя. Поэтому расчет выполняется в два этапа.

Что такое крутящий момент

Крутящий момент – это сила, прилагаемая к твердому телу при вращении. Чем выше он будет, тем мощнее будет двигатель вашего автомобиля. Для расчета крутящего момента используется следующая формула:

Формулу можно расшифровать следующим образом:

  • КМ – это крутящий момент.
  • O – это общий объем двигателя, выраженный в литрах.
  • E – это давление в камере сгорания, выраженное в МПа.
  • 0,0126 – поправочный коэффициент.

Как высчитываются обороты двигателя

Для расчета рабочей мощности необходим не только крутящий момент, но и обороты двигателя. Проще говоря, обороты – это скорость вращения коленчатого вала. Опять же, корреляция прямая: чем выше обороты, тем мощнее и продуктивнее будет ваш автомобиль.

Для вычисления мощности через оборот используется следующая формула:

  • KM – это крутящий момент (формула его расчета приведена в предыдущем параграфе).
  • OD – число оборотов двигателя (выражается в количестве оборотов в секунду).
  • 9549 – это поправочный коэффициент.

Пожалуйста, обратите внимание, что эта формула подходит для расчёт максимальной мощности двигателя.

К сожалению, при работающем двигателе внутреннего сгорания часть мощности “съедается” некоторыми элементами автомобиля (трансмиссия, раздаточная коробка, кондиционер и т.д.).

Итак, на самом деле, фактическое измерение мощности двигателя будет на 10-15% меньше в зависимости от типа транспортного средства и характера его эксплуатации на данный момент.

Расчет мощности по объему двигателя

Внимательный читатель, вероятно, заметил, что первая формула может быть заменена непосредственно на вторую для упрощения расчетов. Сила в этом случае может быть выражена следующим образом:

M = (KM x OD)/9549 = (O x L x OD)/(9549 x 0,0126) = (O x L x OD)/120,3.

Интерпретация этой формулы будет стандартной:

  • О – объем двигателя.
  • Е – давление в камере сгорания.
  • OD – революции.
  • 120,3 – это новый поправочный коэффициент.

Обратите внимание, что давление в камере сгорания (переменная D) в случае стандартного бензинового двигателя обычно находится между 0,8-0,85 МПа. В случае с модернизированным двигателем, эта цифра будет 0,9 МПав случае с дизельным двигателем. 1-2 МПа.

Расчет по расходу воздуха

Если автомобиль оборудован бортовым компьютером и вспомогательными датчиками, можно также определить выходную мощность по расходу воздуха.

Это делается следующим образом:

  1. Поместите автомобиль на платформу для установки шин, надежно закрепите автомобиль и проверьте его надежность.
  2. Запустите двигатель и разгоните автомобиль до 5,5-6 тыс. об/мин. Определите расход воздуха с помощью бортового компьютера.
  3. Рассчитайте конечную мощность по следующей формуле: M = RV x 0,243. RV – это расход воздуха, а 0,243 – поправочный коэффициент.

Расчет по массе и времени разгона от нуля до сотни

Также можно определить, как измеряется мощность двигателя по общему весу автомобиля и времени его разгона до 100 километров в час. К сожалению, у этого способа есть большой недостаток – конечная формула достаточно сложна и может сильно варьироваться в зависимости от технических характеристик автомобиля (типа езды, характера трансмиссии и т.д.).

Читать еще:  Давление при подаче дизельного топлива в дизельных двигателях

Оптимальный алгоритм действия:

  1. Ускорьте ваш автомобиль с 0 до 60 километров в час. Определите время разгона любым удобным способом (обычно это делается с помощью бортового компьютера).
  2. Узнайте вес Вашей машины – это можно сделать с помощью одного и того же бортового компьютера, технической документации и так далее.
  3. Используйте наш калькулятор – введите вес и время разгона, выберите тип привода, укажите передачу.

Расчет по производительности форсунок

Форсунки – это части форсунок, которые подают топливо на цилиндры двигателя. Характер работы инжектора напрямую влияет на формат работы двигателя, поэтому вы можете рассчитать мощность двигателя по мощности инжектора.

Для расчетов используется следующая сложная формула:

  • PF – емкость 1 инжектора. Этот параметр обычно указывается в технической документации двигателя (хотя в случае нового автомобиля эту информацию можно получить с бортового компьютера).
  • KF – это количество насадок. Этот параметр также может быть получен из технической документации или из бортового компьютера.
  • KZ является коэффициентом нагрузки инжектора. Для большинства автомобилей этот параметр равен 0,75-0,8.
  • ТТ – вид топливной смеси. Для бензинов высокой чистоты этот коэффициент обычно составляет 12-13.
  • TD – это тип двигателя. Для атмосферного двигателя этот параметр равен 0,4-0,5, для турбодвигателя – 0,6-0,7.

Эта методика расчета достаточно неточна, так как формула содержит множество поправочных коэффициентов, многие из которых неточно выражены численно. Поэтому фактическая мощность может отличаться от мощности формулы. 10-15% (это, однако, небольшая погрешность).

Расчет по лошадиным силам

Если вы знаете количество лошадиных сил вашего двигателя, вы можете легко узнать и рассчитать лошадиные силы вашего двигателя. Для вычисления используется простая формула:

Это то, что он олицетворяет:

  • M(HP) – мощность двигателя внутреннего сгорания, выраженная в лошадиных силах.
  • 0,735 – это поправочный коэффициент, на который вы должны умножить число ваших “лошадей”.

Чему равна лошадиная сила в машине

1 лошадиная сила – 0,7355 Вт.. Подобная единица измерения была изобретена Джеймсом Ваттом в 1789 году для расчета мощности паровых двигателей. Такое необычное название имеет интересную историю: чтобы продемонстрировать преимущества использования своего паровоза, Джеймс Ватт провел эксперимент, в котором паровоз “соревновался” с лошадью в подъеме тяжестей на большую высоту.

Эксперимент показал, что паровоз “сильнее” лошади в 4 раза, а название “лошадиная сила” вошло в инженерное дело как единица измерения.

Лошадиная сила и другие единицы измерения мощности двигателя

Лошадиная сила (л. с.) — это внесистемная единица измерения мощности. В настоящее время в России она официально выведена из употребления (стандартной единицей СИ для выражения мощности является ватт), но все равно продолжает широко использоваться в автоиндустрии как показатель мощности двигателей.

В 1789 году шотландский инженер и изобретатель Джеймс Уатт ввел термин «лошадиная сила», чтобы показать, работу скольких лошадей способны заменить его паровые машины.

Следует знать, что лошадиная сила — это не максимальный, а усредненный показатель мощности лошади, которую она может поддерживать длительное время. Кратковременно среднестатистическая лошадь может развивать мощность около 1000 кг*м/с, то есть мощность одной лошади равна 13,3 лошадиных сил.

Основные единицы измерения мощности двигателей и их обозначение

1. Лошадиная сила (735,49875 Вт). Обозначается как: hp (это netto мощность двигателя, измеряется с использованием вспомогательных агрегатов двигателя, таких как: глушитель, генератор), bhp (это брутто мощность двигателя, измеряется без использования дополнительных агрегатов).

Также можно встретить и другие обозначения: PS (нем.), CV (фр.), pk (нид.).

В англоязычных странах чаще до сих пор приравнивают лошадиные силы к 745,6999 Вт, что примерно равно 1,014 европейской лошадиной силы.

2. Ватт

Поскольку описание ватта выходит за рамки данной статьи, то здесь мы его касаться не будем.

Как рассчитывается лошадиная сила

Лошадиная сила является условной и неоднозначной единицей измерения мощности.

В России и почти во всех европейских странах, лошадиная сила определяется как 75 кг*м/с (метрическая лошадиная сила), то есть, как мощность, достаточная для поднятия груза массой в 75 кг на высоту 1 метр за 1 секунду. В таком случае 1 л. с. составляет ровно 735,49875 Вт.

Максимальную мощность, которую способна развивать лошадь, принято называть котловой лошадиной силой. Вы можете с легкостью рассчитать и свою максимальную мощность. Для этого нужно замерить время t, за которое вы вбежите на лестницу высотой h и подставить в формулу: m*h/t, где m — масса вашего тела.

Для определения мощности двигателя используются специальные стенды, подробнее об этом написано ниже.

Как замеряют мощность двигателя

Мощность двигателя замеряют в основном для оценки эффективности тюнинга.

Для определения мощности двигателя существует только один точный способ: снять его с автомобиля и установить на специальный стенд. Снятие и установка двигателя — довольно трудозатратный и дорогой процесс, который по силам только автопроизводителям и серьезным гоночным командам.

Для менее точного замера мощности используют динамометрические мощностные стенды (такие как на фото), позволяющие снять показания «с колес». Влияние на результат могут оказать: давление в шинах, их сцепные свойства, температура шин (во время замера протектор сильно нагревается) и даже степень притяжки автомобиля страховочными стропами.

Методика замера

Прогретый автомобиль трогается на первой передаче, разгоняется до 40–50 км/ч, после чего включается последняя передача, педаль газа нажимается до упора и начинается имитация разгона. По достижении максимальных оборотов (с момента начала падения мощности, видимого на мониторе), включается нейтральная передача.

Результат измерения выводится в виде графика, на котором отображена зависимость мощности от оборотов двигателя (синяя кривая — в лошадиных силах).

Шкала, дающая примерное представление о диапазоне мощности двигателей

Для того, чтобы иметь представление о диапазоне мощности двигателей, ознакомьтесь со следующим рисунком:

  • 0-100 л. с. — малолитражные автомобили;
  • 100-200 л. с. — автомобили с двигателем средней мощности;
  • 200-500 л. с. — спортивные автомобили;
  • 500 л. с. и более — гоночные болиды и суперкары.

Сколько мощности у двигателя отбирает навесное оборудование

Потеря мощности двигателя из вспомогательного оборудования.

Современный автомобиль нельзя представить без навесного вспомогательного оборудования, начиная от усилителя рулевого управления и заканчивая кондиционером. Но какую цену мы платим (мы имеем в виду лошадиные силы) за присутствие под капотом дополнительного оборудования? Сколько же отнимает мощности у двигателя навесное оснащение двигателя?

Двигателя внутреннего сгорания представляют собой уникальную конструкцию ряда элементов, которые работая в строгой последовательности, извлекают из топлива энергию. То есть, основная функция мотора заключается в возвратно-поступательных движениях поршней, который начинают вращать коленчатый вал, передающий крутящий момент на коробку передач. Но помимо этого двигатель также выполняет ряд других важных вещей для полноценного функционирования автомобиля.

Все двигателя внутреннего сгорания, как правило, используют приводные ремни и приводные ролики, которые передают крутящий момент на вспомогательное навесное оборудование, обеспечивая их взаимосвязь с частотой работы силового агрегата. Но для движения приводных ремней необходима мощность, которая, по сути, забирается у двигателя. В итоге из-за передачи части крутящего момента на вспомогательное оборудование любой двигатель передает на колеса автомобиля гораздо меньше лошадиных сил, чем изначально было выработано в камере сгорания при воспламенении топлива.

Первым важным компонентом, который использует ременный привод, является водяная помпа (водяной насос). Этот насос необходим для циркуляции антифриза в системе охлаждения двигателя.

Напомним, что антифриз, циркулируя через двигатель, забирает избыточное тепло у силового агрегата, что позволяет мотору не перегреваться. Но как регулировать скорость потока антифриза в системе охлаждения по мере увеличения оборотов двигателя?

Все очень просто. Конструкторы, соединив водяной насос ременным приводом со шкивом коленвала, обеспечили насосу взаимосвязь с оборотами силового агрегата. То есть, чем больше оборотов двигателя (что означает рост температуры двигателя из-за увеличения циклов сгорания топлива), тем быстрее начинает работать водяная помпа, увеличивая циркуляцию охлаждающей жидкости. В итоге даже на высоких оборотах двигатель не перегревается.

Читать еще:  Электронный датчик давления масла в двигателе

К сожалению, для того чтобы вращать шкив водяной помпы с помощью приводного ремня необходимо небольшое количество энергии, которое естественно берется от вырабатываемой мощности двигателя.

Также с помощью ремня и крутящего момента двигателя обеспечивается работы генератора, который обеспечивает зарядку аккумуляторной батареи, что позволяет поддерживать в рабочем состоянии многие функции автомобиля.

Генератор, также как и водяная помпа, для своей работы использует шкив, который вращается за счет движения ремня.

Шкив вращает генератор, который с помощью магнитного поля вырабатывает электроэнергию, передающуюся в аккумулятор.

В итоге возвратно-поступательные движение компонентов двигателя, производящие энергию, по сути, являются источником вращения генератора. Так что генератор также немного забирает мощности у силового агрегата.

Кондиционирование воздуха в салоне машины напрямую не связано с частотой вращения двигателя. Но для работы кондиционера также необходима энергия, которая нужна для полноценного функционирования компрессора кондиционера.

Естественно энергия также берется от двигателя с помощью ременного привода, который вращает элементы компрессора кондиционера. При вращении элементов компрессора фреон, заправленный в кондиционер, начинает циркулировать по системе, охлаждая воздух в салоне.

Этот компонент требует для своей работы немало энергии и способен отнять у двигателя приличное количество мощности. Дело в том, чем больше температура на улице в летнее время, тем больше мощности необходимо компрессору кондиционера, чтобы охладить воздух в салоне. Естественно это приводит к лишней нагрузки на силовой агрегат. Вот почему при включенном кондиционере у многих автомобилей существенно пропадает мощность.

Также с помощью приводного ремня работает система рулевого управления оснащенного гидроусилителем. Дело в том, что гидроусилитель рулевого управления, как правило, оснащен насосом, приводящий в движение гидравлическую жидкость в системе, которая облегчает вращение рулевого колеса.

По сути, жидкость гидроусилителя и насос помогают нам вращать рулевое колесо с помощью гидравлической системы. Но для работы насоса гидроусилителя необходим источник питания. Как и водяная помпа, генератор и компрессор кондиционера, насос гидроусилителя работает за счет вращения шкива ременным приводом. В итоге гидравлический насос, получая крутящий момент, создает в рулевом управлении определенное давление, облегчающее процесс вращения рулевого колеса.

Так сколько же энергии теряется двигателем, который передает часть своей мощности на различное вспомогательное оборудование?

Как правило, в автомобилях используются различные системы конструкции двигателей и навесного оборудования. В итоге разные модели автомобилей теряют различный уровень мощности двигателя. К счастью благодаря различным исследованиям автомобильных организаций и инженерным компаниям есть более точная информация о том, сколько же на самом деле теряют мощности автомобили из-за работы различного навесного оборудования.

Согласно исследованиям в среднем автомобильный кондиционер отнимает у двигателя примерно 4 л.с. (исследование Британской лабораторией возобновляемых источников энергии).

Генератор переменного тока в автомобиле в среднем отнимает около 10 л.с., когда двигатель находится под полной нагрузкой (исследование компании ZENA, DC).

Усилитель рулевого управления в среднем забирает у двигателя 2-4 л.с. в зависимости от скорости и амплитуды вращения рулевого колеса.

Рассчитать сколько же отнимает мощности у двигателя водяная помпа намного тяжелее, поскольку мощность работы водяного насоса напрямую зависит от оборотов двигателя.

Но автомобильному эксперту Дэвису Крэйгу, все-таки удалось рассчитать потери двигателя от работы водяной помпы.

Так согласно его расчетам при 1000 об/минуту двигателя водяной насос отнимает всего 0,13 л.с. или 0,1 кВт. При вращении двигателя в 2000 об/минуту водяной насос забирает примерно 1,1 л.с. или 0,8 кВт. При вращении мотора в 4000 об/минуту потери двигателя составляют примерно 8,6 л.с. или 6,4 кВт.

В итоге, сложив все потери из-за навесного вспомогательного оборудования двигателя, можно вычислить, что в среднем каждый автомобиль оснащенный двигателем внутреннего сгорания теряет примерно 16-27 л.с.

Естественно потеря мощности также зависит от величины нагрузки, оказываемой на тот или иной компонент.

Но это опять же приблизительное значение, поскольку все это высчитывается отдельно для каждого компонента, в случае если бы каждый компонент питался отдельным ременным приводом. Но во всех автомобилях, как правило, используется один или два ременных привода, которые питают все навесное оборудование. В итоге естественно потери мощности двигателя, скорее всего немного ниже, чем указано выше.

Также давайте не забывать, что помимо ременного привода и вспомогательного оборудования потеря мощности, вырабатываемой двигателем, происходит и в других компонентах автомобиля, таких как коробка передач, привода, мосты и т.п. Это происходит из-за трения вращающихся компонентов автомобиля, а также за счет их нагрева.

Так что, как правило, до колес доходит совсем не та мощность, которая на самом деле вырабатывается двигателем.

Так что, как видите, вспомогательное оборудование, расположенное в подкапотном пространстве, отнимает немало энергии у двигателя. Но, тем не менее, навесное оборудование играет очень важное значение для любого автомобиля. Да, конечно, многим может не понравиться, что изначально вырабатываемая двигателем мощность в итоге не доходит до колес машины, но отказаться от навесного дополнительного оснащения силового агрегата невозможно.

Хотя в будущем, скорее всего, большинство дополнительного оборудования получит электрическое питание от мощных аккумуляторных батарей, что позволит автопроизводителем существенно увеличить мощность своих автомобилей без существенной модернизации двигателей внутреннего сгорания.

Самое удивительное, что такие автомобили уже начали появляться на авторынке. Например недавно инженеры Мерседес представили новую технологию для шестицилиндровых двигателей, у которых вспомогательное оборудование питается от 48 В аккумуляторной батареи. Это позволяет освободить двигатель от лишней нагрузки, которое оказывает на него навесное оборудование.

Так что, скорее всего, уже в ближайшем будущем на авторынке будет появляться все больше автомобилей без приводных ремней, которые питают навесное оборудование двигателей.

Зачем автомобилю крутящий момент

9 июня 2020 в 09:29

АвтоПортал

8280 просмотров

В материалах об автомобилях часто употребляются выражения «высокие обороты», «большой крутящий момент». Как оказалось, эти выражения (а также связь между этими параметрами) понятны не всем. Поэтому расскажем о них подробнее.

Начнем с того, что двигатель внутреннего сгорания это устройство, в котором химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу.

Схематически это выглядит так:

Возгорание топлива в цилиндре (6) приводит к перемещению поршня (7), что, в свою очередь, приводит к проворачиванию коленчатого вала.

То есть, циклы расширения и сжатия в цилиндрах приводят в действие кривошипно-шатунный механизм, который, в свою очередь, преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала:

Итак, важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

В практической плоскости — мощность влияет на скоростные характеристики авто: чем выше мощность, тем большую скорость может развивать автомобиль.

Крутящий момент

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

Читать еще:  Шум при запуске двигателя ниссан х трейл

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Еще примеры

Для большего практического понимания важности крутящего момента приведем несколько примеров на гипотетическом двигателе.

Даже без учета максимальной мощности, по графику, отражающему крутящий момент, можно сделать некоторые выводы. Разделим количество оборотов коленчатого вала на три части — это будут низкие обороты, средние и высокие.

На графике слева представлен вариант двигателя, который имеет высокий крутящий момент на низких оборотах (что равносильно высокому крутящему моменту на малых скоростях) — с таким двигателем хорошо ездить по бездорожью — он «вытянет» из любой трясины. На графике справа — двигатель, у которого высокий крутящий момент на средних оборотах (средних скоростях) — этот двигатель рассчитан для использования в городе — он позволяет достаточно резво ускоряться от светофора до светофора.

Следующий график характеризует двигатель, который обеспечивает хорошее ускорение даже на высоких скоростях — с таким двигателем комфортно на трассе. Замыкает графики универсальный двигатель — с широкой полкой — такой двигатель и из болота вытянет, и в городе позволяет хорошо ускоряться, и на трассе.

К примеру 4,7-литровый бензиновый двигатель Toyota Land Cruiser 200 развивает максимальную мощность 288 л.с. при 5400 об/мин, а максимальный крутящий момент в 445 Нм при 3400 об/мин. А дизельный 4,5-литровый двигатель, устанавливаемый на это же авто развивает максимальную мощность 286 л.с. при 3600 об/мин, а максимальный крутящий момент – 650 Нм при «полке» в 1600-2800 об/мин.

1,6-литровый двигатель Mitsubishi Lancer X развивает максимальную мощность 117 л.с. при 6100 об/мин, а максимальный крутящий момент в 154 Нм достигается при 4000 об/мин.

2,0-литровый двигатель Honda S2000 обеспечивает максимальную мощность в 240 л.с. при 8300 об/мин, а максимальный крутящий момент в 208 Нм при 7500 об/мин, являясь примером «спортивности».

Итак, как мы уже видели, связь между мощностью, крутящим моментом и оборотами двигателя — довольно сложная. Суммируя, можно сказать следующее:

  • крутящий момент отвечает за способность ускоряться и преодолевать препятствия,
  • мощность ответственна за максимальную скорость автомобиля,
  • а обороты двигателя все усложняют, так как каждому значению оборотов соответствует свое значение мощности и крутящего момента.

А вцелом все выглядит так:

  • высокий крутящий момент на низких оборотах дает автомобилю тягу для передвижения по бездорожью (таким распределением сил могут похвастать дизельные двигатели). При этом мощность может стать уже вторичным параметром — вспомним, хотя бы, трактор Т25 с его 25 л.с.;
  • высокий крутящий момент (а лучше — «полка крутящего момента) на средних и высоких оборотах дает возможность резко ускоряться в городском потоке или на трассе;
  • высокая мощность двигателя обеспечивает высокую максимальную скорость;
  • низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.

Крутящий момент двигателя: что это такое

Даже тем людям, которые не очень интересуются автомобилями, у которых их никогда не было и которые не намереваются становиться их владельцами, отлично известно, что одной из основных характеристик этих транспортных средств является мощность двигателя. Ее принято измерять в лошадиных силах (несколько реже используют более «правильную» с технической точки зрения величину — киловатт), причем вполне справедливо считается, что чем выше значение этого показателя — тем лучше.

С другой стороны такая важная характеристика как крутящий момент двигателя часто остается неизвестной даже некоторым автолюбителям. И это при том, что она является, на самом деле, ничуть не менее значимой характеристикой двигателя, чем его мощность и обороты, с которыми, кстати, находится в весьма тесной и даже неразрывной взаимосвязи.

В данной статье мы попробуем объяснить, что такое крутящий момент двигателя, чем он отличается от мощности, от чего зависит и на что влияет.

  • Что такое крутящий момент двигателя автомобиля простыми словами
  • От чего зависит величина крутящего момента двигателя
  • На что влияет крутящий момент двигателя
  • Видео на тему

Основные показатели двигателя

Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

Основные характеристики ДВС можно оценить тремя основными показателями:

  • мощность двигателя;
  • крутящий момент;
  • расход топлива.

Основные показатели ДВС

Рассмотрим более подробно каждый из этих показателей.

Что такое крутящий момент

Крутящий момент представляет собой качественный показатель, выражающий силу вращения коленвала, и рассчитывается произведением силы, давящей на поршень, на плечо (расстояние между центром вращения оси коленчатого вала до места крепления поршня к шатуну). Измеряется в количестве ньютонов на метр (Нм).

Сила крутящего момента зависит от давления на поршень при сгорании газов, рабочего объема камеры сгорания и двигателя в целом, степени сжатия горючей смеси в камере сгорания.

Традиционно более высокий крутящий момент у дизелей, это объясняется степенью сжатия, превосходящей бензиновые двигатели практически вдвое.

Сильный крутящий момент дает автомобилю повышенную динамику набора скорости даже при низких оборотах, и заметно повышает тяговые свойства двигателя. Максимальных значений данная характеристика достигает при определенной частоте вращения коленвала, причем у дизелей этот показатель ниже, чем у бензиновых.

На что влияет крутящий момент двигателя

Если производить аналогию с человеческим организмом, то можно условно определить, что крутящий момент — это аналог силы, а мощность — это аналог выносливости. Именно от мощности двигателя внутреннего сгорания в конечном итоге зависит то, какую максимальную скорость может развить автомобиль, а от крутящего момента — то, как быстро сможет он это сделать. Именно поэтому далеко не все мощные автомобили имеют хорошую динамику разгона, и далеко не все, у которых она находится на высоком уровне, располагают очень мощными моторами.

Опытные автомобилисты отлично знают, что лучше всего выбирать для себя автомобиль с таким двигателем, показатель крутящего момента которого при работе на тех оборотах, на которых он обычно функционирует, является наилучшим. Дело в том, что это позволяет им использовать потенциал мощности ДВС в максимальной степени.

Следует заметить, что производители двигателей внутреннего сгорания всячески стремятся увеличить их крутящие моменты, причем во всем диапазоне работы моторов. Чаще всего пытаются достичь этого (и, кстати говоря, достаточно успешно) с помощью турбонаддува, управляемых фаз газораспределения (это оптимизирует процесс сгорания топливной смеси), повышения степени сжатия, использованием особых конструкций впускного коллектора и целым рядом других способов.

Читайте также: Чем отличается задний привод от переднего.

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

Читайте также: Основные компоновочные схемы поршневых двигателей внутреннего сгорания

Внешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector