Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Шаговые двигатели FAQ (ЧАВО)

Шаговые двигатели FAQ (ЧАВО)

Самые распространенные вопросы по шаговым двигателям и всему что с ними связано

Ответ: Вал перескочит на один шаг (несколько, если Вы уперто решили научить шаговый двигатель крутиться), при этом магнитное поле словит магниты ротора в том же положении, что и было до внешнего воздействия, приводу это не пойдет на пользу, но и не навредит (в разумных пределах, при запитанном шаговом приводе искать ЭФИР путем вращения его вала вторым двигателем не нужно, и эфир не найдете и драйвер подвергнется испытаниям на прочность)

Ответ: Вал двигателя потеряет дискретность движения (свободное вращение).

Ответ: Это изменит направление движения шаговика.

Ответ: У 118 мм привода NEMA34 рабочее напряжение 2,5 Вольта, а это означает, что при таком напряжении он начнет работать, при условии, что сила тока будет достаточной. Скорость работы при этом будет крайне невысокой. Так как, шаговый двигатель не используется в нормальных условиях без драйвера, то и информация о его рабочем напряжении, по сути, ничего не несет. Для расчета данного параметра используйте эмпирическую формулу от основателя GECKO DRIVE — 32*√L, где L-индуктивность двигателя в мГн.

Ответ: Да, когда вы его повернете, он выдаст две волны переменного тока с фазой 90 градусов.

Ответ: Да, он будет генерировать переменный ток на 2 парах проводов, одна фаза будет отклонятся на 90 градусов по отношению ко второй. Это не очень хороший способ получить питание от сети переменного тока, но он работает.

Ответ: Нет, двигатель постоянного тока имеет ту же мощность при любой нормальной скорости, но он не может остановиться без нагрева.
Шаговый двигатель будет иметь наибольшую мощность, когда он остановлен, мощность падает по мере его ускорения. Только шаговый двигатель имеет точку драматического падения момента (Гармоническую точку) на определенной скорости. Двигатель постоянного тока этим не страдает.

Ответ: Да, это цель, скоторой его и придумали. В данном вопросе он дает фору приводам постоянного тока (и переменного), так как не требует сложной системы цифрового управления и считывания положения вала для этого.

Ответ: Это приведет к частичному размагничиванию магнитного ротора внутри, после этого двигатель не будет таким как прежде, следует заново намагнитить ротор или смириться.

Ответ: Это не производитель шагового двигателя, это не рыбка из мультфильма Дисней, это не капитан Наутилуса. NEMA это стандарт, введенный Национальной ассоциацией производителей электрооборудования (англ. National Electrical Manufacturers Association, NEMA), который позволяет унифицировать фланцы шаговых двигателей. NEMA 17, к примеру, означает, что сторона фланца привода равна 1,7 дюймам или 42 мм (какие при этом дюймы используются нам не известно, так как от фланца к фланцу они, по какой-то причине разные), в наших широтах чаще используется обозначение в мм и без аббревиатуры NEMA (57й, 86й и тд.)

Ответ: Ни один из них ни мощнее ни лучше. И да, закон Ома вполне себе работает, но только, если рассматривать шаговый двигатель как утюг. Понятие «мощность» к ШД не применяется даже производителями, так как, не совсем корректно и показательно. Прежде всего, следует обратить внимание на формулу магнитного потока Ф, который и является источником крутящего момента, Ф=L*I. То есть, по этой формуле на первый взгляд вывод очевиден — больше ток (I) круче тяга, но есть одно но — длина корпуса двигателя. Как ни старайся, но много витков толстым проводом сделать не выйдет в одном и том же корпусе, а толщина провода как раз и дает нам максимальный ток, который способен держать двигатель. Поэтому высокий ток = толстый провод обмоток = мало витков = низкая индуктивность, малый ток = много витков = высокая индуктивность, как ни крути, но произведение высокого тока на малую индуктивность = произведению низкого тока на высокую индуктивность. Вывод: Крутящий момент у обоих двигателей одинаковый. Для любителей превышать номинальный ток двигателя всегда открыт клуб охотников за токами Фуко и свидетелей класса изоляции B.

Ответ: Не лучше и не хуже. Что должно приходить в голову, когда видим характеристику тока на двигателе: Больше ток = меньше индуктивность = меньше реактивное и общее сопротивление. То есть, двигатель с большим током труднее сорвать в пропуск шагов с увеличением его оборотов, при прочих равных (напряжение) высокоамперные приводы будут иметь преимущество в максимально достижимой скорости вращения без потери момента. Но, одновременно с этим, растут требования к драйверу. Если учесть тот факт, что драйверы уже очень умные и с широкими диапазонами рабочих токов, то можно сказать, что высокоамперный привод имеет преимущество.

Ответ: ну, во-первых, этот вопрос уже больно слышать, начнем с простого сравнения ШД с механическим устройством, я бы сравнил с храповым колесом, вместо зубьев — магнитное поле и насечки на роторе, упор — момент удержания. Так вот, если запитать обмотки, то вращения мы не получим, мы получим замкнутый на зубе храповик, до тех пор, пока не придет команда скакнуть на следующий зуб и тд. Это очень примерное описание. А теперь представьте, что Вам, для перемещения привода по кругу нужно каждый раз нажать на пружину и перескочить на следующий зуб, так это и работает, есть импульсы — скачем по зубам, в обычных приводах постоянного и переменного поля идет скольжение и поле статора догоняет поле ротора и догнать не может, иначе ротор станет в поле. В шаговом двигателе вся окружность разделена на дискретные участки, и вращение это их переборка по очереди, поле то возникает в одних обмотках, то пропадает и возникает в других и так по кругу, в связи с тем что обмотки сопротивляются изменению поля, в определенный момент при слишком частом переключении драйвер плюет на это все и начинает недокачивать ток в обмотки, при этом и работа магнитного поля падает. Вывод: быстро крутить шаговый двигатель можно и даже очень быстро, но это будет вращение ради вращения, момент обычно падает у NEMA23 на 48В напряжении начиная с 400-500 оборотов, у NEMA34 с 200-300 и так далее. В целом зависимость следующая — чем больше двигатель, тем он медленнее. Существуют способы эту проблему частично компенсировать (обратная связь), но крутить ШД до 2-3 тыс оборотов вряд-ли имеет смысл.

Типичный срок службы шагового двигателя составляет 10 000 часов работы. Это примерно 4,8 года; учитывая, что шаговый двигатель работает одну восьмичасовую смену в день. Срок службы шагового двигателя может варьироваться в зависимости от интенсивности использования и от того, насколько качественный драйвер им управляет.

Поскольку шаговые двигатели являются бесщеточными, они не требуют технического обслуживания из-за износа щеток и коллекторов.

Вопрос: Какие бывают проблемы с шаговыми двигателями?

Решение: Это наиболее распространенных проблем и одна из самых трудных для обнаружения. Начните с проверки контактов, чтобы убедиться, что все соединения между шаговым двигателем и драйвером и контроллером изолированы должным образом и не имеют ненадежного контакта. Если на клеммниках есть гуталинчик, то нормально протяните соединение и используйте кабельные гильзы. При замене шагового двигателя, шагового драйвера или пакета драйверов или контроллера в системе управления движением обязательно проверьте все клеммные колодки и разъемы.

Решение: Проверьте, не слишком ли длинны провода/кабели. Для случаев, где расстояние от шагового двигателя до шагового драйвера превышает 7,5 метров, то стоит проверить, не решили ли Вы, что сечения проводов, выходящих из двигателя будет достаточно на такой длине провода. Хлыст проводов, установленный на заводе не предполагает, что Вы будете использовать магистрали длиннее 7,5 метров. Еще один вариант — старый двигатель. Отнюдь даже ШД не вечны, со временем намагниченность ротора падает, что приводит к падению момента. Также, намагниченность падает каждый раз, когда Вы вскрываете двигатель.

Решение: в 50% случаев — меняйте драйвер, в 30% случаев — наука о контактах и изломах в проводах, в 15% случаев — меняйте шаговый привод, в 5% случаев — включите тумблер.

Решение: Если драйвер достаточно качественный, то пару раз он Вам это простит, но в большинстве случаев это смерть драйвера.

Решение: Замена двигателя, перемотка до типоразмера NEMA 42 экономически не целесообразна.

Решение: Шаговый двигатель, приводимый в действие внешней нагрузкой, создает обратное напряжение ЭДС на драйвере. Более высокие скорости приведут к более высоким уровням напряжения. Если скорость вращения становится чрезмерно высокой, это напряжение может привести к повреждению драйвера. Это особенно опасно, когда двигатель приводится в движение внешней силой, когда драйвер все еще включен.

Решение: 90% случаев обрыв одного фазного провода или неустойчивый контакт на нем. Были случаи, когда один такой двигатель заставляет танцевать и все остальные, установленные на оборудовании.

Продолжаем с вопросами

Ответ: Индуктивность является основной причиной потери крутящего момента двигателями на высоких скоростях. Электрическая постоянная времени τ-это время, за которое обмотка двигателя заряжается до 63% от номинального значения при заданном сопротивлении R и индуктивности L. При τ = R/L на низких скоростях высокая индуктивность не является проблемой, поскольку ток может легко быстро протекать через обмотки двигателя. Однако на высоких скоростях достаточный ток не может достаточно быстро проходить через обмотки до того, как ток переключится на следующую фазу, тем самым уменьшая крутящий момент, обеспечиваемый двигателем. Следовательно, именно ток и количество витков в обмотках определяют максимальный выходной крутящий момент в двигателе, в то время как приложенное к двигателю напряжение и величина индуктивности обмотки будут влиять на скорость, при которой может быть получен заданный крутящий момент.

Ответ: Напряжение можно рассматривать как пропускающий ток фактор через обмотки катушки. При увеличении напряжения также увеличивается скорость прокачки тока через катушку. Это, в свою очередь, приводит к тому, что ток в обмотке нарастает быстрее и способен создавать большее магнитное поле. Это большее магнитное поле создает больший крутящий момент. Но это больше относится к приемистости двигателя на относительно высоких скоростях, напряжение просто сдвигает точку потери момента в область бОльшей скорости, сам момент физически ограничен размером двигателя и магнитными свойствами ротора.

Ответ: Большинство шаговых двигателей имеют изоляцию класса B. Это позволяет двигателю выдерживать температуру до 130° C. Поэтому при температуре окружающей среды 40° C шаговый двигатель имеет допуск на повышение температуры до 90° C, что позволяет шаговым двигателям работать при высоких температурах. А Вам позволяет заварить на них чай.

Ответ: Можно увеличить крутящий момент, увеличив ток, но, делая это, это вызывает ряд негативных последствий, например, нарастание нагрева до опасных значений (я напоминаю, класс изоляции обмоток — B или 130 градусов Цельсия), что в один прекрасный момент приведет к клину двигателя от превращения лака изоляции в клейстер и теплового расширения всего, что может расширится. Еще одной радостью является нарастание параллельно с нагревом сопротивления, что практически полностью умножает на ноль полученную выгоду. Кратко это можно описать как короткую, но яркую жизнь.

Ответ: Шаговые двигатели могут работать как в параллельном, так и в последовательном режимах. В параллельном режиме может работать только четырехпроводный двигатель, в то время как в последовательном режиме может работать шестипроводный двигатель. Восьмивыводные двигатели могут работать как параллельно, так и последовательно. В тех случаях, когда на более высоких скоростях требуется больший крутящий момент, лучшим выбором является меньшее значение индуктивности, характерное для двигателей с четырьмя выводами.

Ответ: Тормоз не замедляет вал двигателя, он только удерживает его на месте. Если на тормоз подается 24 В, тормоз «отпускается», и вал двигателя может свободно вращаться. Если 24 В не подается на тормоз, он фиксирует положение и удерживает вал двигателя на месте. Это необходимо при использовании ШД для удержания больших масс имеющих степень свободы по вектору притяжения земли, при отключении электричества это может спасти деталь, конечность, жизнь котика. Но тормоза, как известно, придумали трусы.

Ответ: Круглый двигатель — это более старый дизайн с более плоской кривой Момент/Скорость. Они обеспечивают больший крутящий момент при более высоких оборотах. Квадратные двигатели обеспечивают больший крутящий момент при более низких оборотах. В целом, круглые приводы обладают меньшим моментом в том же размере что квадратные.

Ответ: Нет. Шаговый двигатель просто остановится. Однако драйвер может пострадать, если это состояние продлится длительное время.

cnc-club.ru

Статьи, обзоры, цены на станки и комплектующие.

Читать еще:  Шевроле круз не запускается двигатель причины

Расчет напряжения для шаговых двигателей

  • Отправить тему по email
  • Версия для печати

Расчет напряжения для шаговых двигателей

Сообщение Nick » 22 дек 2011, 21:07

Расчет шагового двигателя

Какое напряжение должно быть у источника питания?

Чтобы рассчитать необходимое напряжение эмпирическим способом, возьмем источник питания 24В или любой другой источник, который есть у вас под рукой, и который будет выше необходимого минимума драйвера и подключим его к самой нагруженной оси.

Погоняйте ось и плавно увеличивайте скорость пока не определите максимальную скорость на которой шаговый двигатель будет работать без пропуска шагов, для тестового источник питания.

Используя следующую формулу вы можете определить необходимое напряжение питания для этой оси:
(Скорость которую вы хотите)÷(Скорость, которую вы получили * 0.9) * (Тестовое напряжение) = Необходимое напряжение питания.

Пример: (300 IPM ÷ (150IPM * 0.9) * 24VDC = 53.3VDC

Удостоверьтесь что полученное напряжение питания находится в допустимых пределах для вашего драйвера!

Какое напряжение питания у моего Шагового двигателя?

Вычисление максимального напряжения для заданной индуктивности ШД

Чтобы вычислить максимальное напряжение которое вам следует использовать в зависимости от индуктивности обмоток шагового двигателя используйте эту формулу:
Максимальное напряжение = 1000 * SQRT(Индуктивность)
(SQRT — это квадратный корень.)
Пример, двигатель с 6мГн на фазу:
1000 * SQRT(0.006) = 77В Максимум.
Пример мотора с 2.5мГн:
1000 * SQRT(0.0025) = 50В Максимум.

Замечание: Не все моторы одинаково созданы одинаковыми .

Если вы используете эту формулу и двигатели кажутся слишком горячими, уменьшите напряжение пока температура не станет приемлемой. Шаговые двигатели разработаны для работы горячими, но не стоит прованивать помещение горелой изоляцией . Многие двигатели рассчитаны на выдерживание температуры до 80 o С. Для моих личных целей я ограничиваю температуру в 60 o C.

Читать еще:  Что такое инверторный двигатель в генераторе

Вычисление Сопротивления и мощности рассеивания ток-ограничивающих резисторов

Замечение: Только для L/R систем.

Это простое применение закона Ома для последовательной цепи. Ваш резистор должен сбрасывать разницу в напряжении между расчетного напряжения шагового двигателя и напряжением источника питания:
Изменение напряжения на резисторе = Напряжение источника питания — расчетное напряжение шагового двигателя.

Применяя закон Ома, делим на ток шагового двигателя получаем сопротивление резистора:
Значение резистора = Изменение напряжения на резисторе / Ток обмоток ШД.

Наконец, и это очень важно, вам нужно знать мощность рассеивания резистора которые он будет рассеивать в виде тепла, на которую он должен быть рассчитан.
Значение мощности рассеивания резистора = Изменение напряжения на резисторе * Ток обмоток шагового двигателя.

Например: Шаговый двигатель промаркирован 5A на 2.5V, с источником питания в 26В имеем:
Изменение напряжения на резисторе = 26В — 2.5В = 23.5В
Сопротивление резистора = 23.5В / 5А = 4.7 Ом
Мощность рассеивания резистора = 23.5В * 5А = 117.5 Ватт

В чем разница между серводвигателем и шаговым электродвигателем?

Всем инженерам хорошо известно, что нет такого понятия, как идеальное решение — есть просто лучшее решение для рассматриваемой проблемы. Это особенно актуально для серводвигателей и шаговых двигателей. Оба широко используются в промышленности. Применение ни одного из них не является универсальным решением. Однако при правильном применении как шаговые, так и серводвигатели могут обеспечить эффективную и надежную работу при максимальной производительности системы. Дерево решений для выбора между ними имеет много ветвей, но наиболее важными являются скорость, ускорение и цена.

Шаговые двигатели

Шаговые двигатели состоят из ротора с постоянными магнитами и неподвижного статора, в котором расположены обмотки. Когда ток проходит через обмотки статора, он генерирует магнитный поток, который взаимодействует с магнитным полем ротора и приводит ротор в движение. Шаговые двигатели имеют очень большое количество полюсов, обычно 50 или более. Драйвер шагового двигателя последовательно подает напряжение на каждый полюс, так что ротор вращается с определенным шагом. Из-за очень большого количества полюсов движение кажется непрерывным.

Шаговые электродвигатели имеют ряд положительных качеств. Поскольку они генерируют пошаговое движение, для них, как правило, не требуется замкнутая система регулирования, что избавляет от необходимости установки энкодера или тахогенератора, что положительно сказывается на цене установки. Большое количество полюсов позволяет им генерировать очень высокий крутящий момент при нулевой скорости. Они компактны и в целом экономичны (рисунок ниже).

С другой стороны, шаговые электродвигатели имеют ограничения по скорости. Они обычно работают с максимальной эффективностью всего при 1200 об / мин или ниже. Хотя они генерируют высокий крутящий момент при нулевой скорости, крутящий момент падает при увеличении скорости (график ниже). Например, двигатель, создающий момент 3 кгс·м при нулевой скорости, может выдать только 1.5 кгс·м при 500 об / мин и всего 0.3 кгс·м при 1000 об / мин.

Теоретически можно использовать редуктор для увеличения крутящего момента, но именно здесь малая скорость шаговых двигателей становится проблемой. Добавление редуктора 10: 1 к шаговому двигателю со скоростью 1200 об / мин может повысить крутящий момент на порядок, но также снизит скорость до 120 об / мин. Если двигатель используется для шарико-винтового привода или чего-либо подобного, он, вероятно, не будет обеспечивать достаточную скорость для удовлетворения потребностей механизма.

Как правило, шаговые двигатели не изготавливаются в типоразмерах, превышающих NEMA 34, при этом большинство применений относятся к размерам двигателей NEMA 17 или NEMA 23. В результате практически невозможно найти шаговые двигатели, способные производить крутящий момент от 28 до 57 кгс·м.

На графике зеленым показана зависимость момент шагового двигателя от скорости, красным – зависимость максимального момент серводвигателя от скорости и синим – момент серводвигателя от скорости.

Шаговые двигатели также имеют ограничения по производительности. Вы можете представить себе шаговый двигатель как пружинно-массовую систему. Двигатель должен преодолеть трение, чтобы начать вращение и переместить нагрузку, после чего ротор машины не контролируется. В результате команда продвижения на пять шагов может привести к повороту двигателя только на четыре шага или шесть шагов.

Однако, если система электропривода дает команду двигателю продвинуться на 200 шагов и он сделает это за несколько шагов, ошибка составит несколько процентов. Хотя мы используем шаговые электродвигатели с разрешением от 25 000 до 50 000 шагов на оборот, но поскольку двигатель представляет собой систему с пружинно-массовой нагрузкой, наш обычный диапазон составляет от 2000 до 6000 отсчетов за оборот. Тем не менее, при этих разрешениях даже ошибка в 200 шагов соответствует доле градуса.

Добавление энкодера позволит системе точно отслеживать движение, но не сможет преодолеть базовую физику работы электрической машины. Для приложений, требующих повышенной точности позиционирования и разрешения, серводвигатели обеспечивают лучшее решение.

Серводвигатели

Как и шаговые двигатели, серводвигатели имеют много реализаций. Давайте рассмотрим наиболее распространенную конструкцию, которая включает в себя ротор с постоянными магнитами и неподвижный статор с обмотками. Здесь также ток создает распределение магнитного поля, которое воздействует на ротор и развивает крутящий момент. Однако серводвигатели имеют значительно меньшее число полюсов, чем шаговые электрические машины. В результате они должны работать в замкнутой системе управления.

В целом, серводвигатели более сложные, чем шаговые. Они работают значительно быстрее, со скоростями порядка нескольких тысяч оборотов в минуту (рисунок ниже). Это позволяет использовать серводвигатели с редукторами, чтобы обеспечить гораздо более высокий крутящий момент на нужных скоростях. Они также обеспечивают более постоянный крутящий момент во всем диапазоне скоростей электродвигателя. В отличие от шаговых двигателей, они не имеют удерживающего момента как такового.

Однако работа в замкнутом контуре позволяет контроллеру / электроприводу дать команду на удержание нагрузки в определенном положении, и двигатель будет непрерывно ее регулировать, чтобы удерживать ее на одном месте. Таким образом, серводвигатели могут обеспечивать фактический удерживающий момент. Тем не менее, обратите внимание, что вариант удерживающего крутящего момента при нулевой скорости зависит от правильного размера двигателя для управления нагрузкой и предотвращения колебаний относительно заданного местоположения.

Серводвигатели обычно используют редкоземельные магниты, в то время как шаговые двигатели чаще используют менее дорогие обычные магниты. Редкоземельные магниты позволяют развивать более высокий крутящий момент в меньшем корпусе. Серводвигатели также получают преимущество в крутящем моменте от их общего физического размера. Диаметры серводвигателей обычно варьируются от NEMA 17 до 220 мм. В результате этих комбинированных факторов серводвигатели могут выдавать крутящий момент до 114 кгс·м.

Сочетание скорости и крутящего момента позволяет серводвигателям обеспечивать лучшее ускорение, в сравнении с шаговыми двигателями. Они также обеспечивают лучшую точность позиционирования в результате работы с обратной связью.

Читать еще:  Шинная пилорама из двигателя мотоблока своими руками

Подведем итоги

Серводвигатели предлагают неоспоримое преимущество в производительности. Однако с точки зрения стабильности позиционирования шаговые двигатели могут быть весьма конкурентоспособными. Эта точка зрения приводит к распространенному заблуждению о шаговых двигателях, которое является мифом о «потерянном шаге». Как мы уже обсуждали ранее, массово-пружинный характер нагрузки шагового двигателя может привести к нескольким потерянным шагам. Привод дает команду движению шагового механизма в определенный угол, однако потерянные шаги не переносятся от вращения к вращению. Все зависит от необходимого уровня точности позиционирования.

Вышеприведенное обсуждение подводит нас к окончательному и ключевому различию между шаговыми электродвигателями и сервоприводами — стоимости. Шаговые двигатели обычно не требуют обратной связи, они используют менее дорогие магниты и редко содержат редуктора. Из-за большого количества полюсов и их способности генерировать удерживающий момент они потребляют меньше энергии при нулевой скорости. В результате шаговый двигатель может быть на порядок дешевле, чем аналогичный серводвигатель.

Подводя итог, можно сказать, что шаговые двигатели являются хорошим решением для механизмов с малой скоростью вращения, небольшим ускорением и малыми требованиями к точности. Шаговые двигатели также имеют тенденцию быть компактными и недорогими. Это делает эти машины подходящими для применения в медицине, биотехнологиях, безопасности и обороне, а также в производстве полупроводников. Серводвигатели — лучший выбор для систем, требующих высокой скорости, высокого ускорения и большой точности. Компромисс — более высокая стоимость и сложность. Серводвигатели обычно используются в упаковке, конвертации, плетении сетей и аналогичных приложениях.

Если ваши требования не слишком критичны, а бюджет ограничен, рассмотрите шаговый двигатель. Если производительность является наиболее важным аспектом, серводвигатель выполнит свою работу, но будьте готовы заплатить больше.

Где применяются шаговые двигатели в автомобиле

Представим такую ситуацию: ваш двигатель не заводится при температуре около 10 градусов. Что делать? Данная методика может помочь быстро определить неисправность, если имеются приборы для диагностики. Но бывают и другие ситуации. Двигатель может заглохнуть где-нибудь в пути. Или же может глохнуть сразу после запуска. А что можно предпринять, если температура на улице ниже 10 градусов, да еще и автомобиль находится в это время на стоянке? В таких ситуациях данные процедуры не смогут помочь. Так что же делать? Существует несколько советов, которые помогут понять, что за неисправность возникла, и найти способ решение возникшей проблемы.

Существует мнение, что во время запуска двигателя нельзя нажимать педаль дроссельной заслонки. Но это не так. Автомобиль может заглохнуть в ситуации, когда шаговые двигатели отказали или возникла неисправность в их цепях. В этом случае шаговый мотор просто закрывает байпасный канал. И тогда для запуска двигателя необходимо будет открывать дроссельную заслонку. Сначала нужно включить стартер, затем слегка нажать на педаль дроссельной заслонки. Так двигатель можно завести. Но это еще не все. Чтобы двигатель снова не заглох, надо поддерживать его обороты педалью дроссельной заслонки. Так вы сможете добраться до ближайшего сервиса, а там уже вы сможете определить причину, по которой двигатель перестал работать и найти решение проблемы.

Двигатель не заводится.

Что делать, если двигатель в автомобиле не заводится? Очень легко можно определить неисправность, если автомобиль только что заводился. В этом поможет процедура нахождения неисправности. Она проводит проверку узлов системы управления и практически всех электрических связей. Если ваш аккумулятор в порядке, то нужно использовать следующую методику нахождения неисправности двигателя. Она состоит из нескольких этапов.

Проверяется, подается ли на систему электронного управления питание, установлена ли связь с блоком управления. Это можно проверить, подключив тестер. Проверяют также датчик температуры. Нужно, чтобы он правильно отражал тепловое состояние двигателя.

Проверка работы бензонасоса

Повернув ключ зажигания, вы включите главное реле ЭСУД и реле бензонасоса. Если насос работает, то вы услышите это. Если же вы ничего не слышите, это еще не признак неисправности. Насос может просто тихо работать или же его неслышно из-за посторонних шумов. В этом случае нужно открыть заднее сиденье. Там расположен люк бензобака, и очень хорошо слышно, работает ли мотор или нет.

Проверка наличия синхронизации при попытке вращения стартером двигателя.

Во время прокрутки стартером система управления, которая применяется в двигателе, показывает, вращается ли двигатель или нет. Это видно по импульсам с датчика коленчатого вала. Как раз в течение этого процесса прокрутки происходит первая подача топлива. Если ремни газораспределения установлены неправильно, может возникнуть неисправность, связанная с неправильной синхронизацией. И двигатель не будет запускаться.

Проверка системы зажигания

Свечи зажигания могут стать причиной серьезных проблем для владельцев машин, оснащенных ЭСУД. Как известно, в холодное время года приходится несладко. Возникают проблемы с запуском автомобиля. Если он находится в холоде, да еще свечи подводят, тогда приходится довольно тяжело автолюбителям. В принципе, если с двигателем все в порядке, в машине хорошие свечи. То проблем с запуском даже холодного автомобиля не возникает. Но иногда можно встретить дешевые свечи, по 10 долларов за комплект. Сначала такая цена приводит в восторг. Но зато потом проблем не оберешься. Несколько дней, и уже начинаются проблемы. Например, двигатель может троить. Даже в теплую погоду машина не запускается, что уж говорить о холоде? Все дело в том, что при производстве свечей, необходимо соблюдать специальную технологию. У дешевых свечей после недолгого использования возникают микротрещины, и они выходят из строя.

Проверка работы форсунок.

К большому счастью для автолюбителей, некачественных форсунок нет. Те, которые производят, подтверждены качеством таких известных фирм, как Bosch, Siemens, GM. После долгого использования, правда, меняются исходные характеристики. Форсунка может также засориться от «грязного топлива». Чтобы узнать баланс форсунок, нужно воспользоваться тестером ДСТ-6Т. Если вы решили очистить форсунку через топливный бак, будьте осторожны. Последствия могут быть не самые оптимистичные. Такие очистки надо делать постоянно для достижения положительного результата. В противном случае ничего хорошего из этой процедуры не выйдет. Самый надежный способ очистки – это все-таки очистка с помощью специального оборудования. Конечно, это стоит денег. Но в итоге вы поймете, что это самый выгодный вариант.

Плохой пуск двигателя.

Если возникает неисправность в шаговом двигателе, то двигателю не хватает воздуха. В этом случае вы можете ехать на автомобиле, только если будете поддерживать холостой ход педалью дроссельной заслонки. Воспользовавшись тестером ДСТ-2М или ДСТ-8, вы можете выставить обороты холостого хода на прогретом двигателе на уровне 900-1000 оборотов. Затем снять разъем с шагового мотора. Но так можно делать при температуре до минус пяти. При минус пятнадцати прогревайте двигатель с помощью педали дроссельной заслонки. Ниже восемнадцати градусов прогреть двигатель практически невозможно. После пары попыток он заглохнет, а свечи зальет.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector