Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Полезные статьи

Полезные статьи

Двигатель внутреннего сгорания тепловоза

Принцип функционирования ДВС

Агрегаты, где топливо под воздействием химических реакций перегорает и трансформируется в энергию тепла, а далее обеспечивает механическую рабочую силу, называются тепловыми двигателями. К общему названию «ТД» относятся как паровые машины и турбины, так и двигатели внутреннего сгорания, функционирующие на основе поршней, газотрубные и реактивные двигатели, а так же конструктивно совмещённые между собой разноплановые двигатели (турбопоршневые).

Принцип действия ДВС, а именно превращение энергии из химической в тепловую, позволяет применять данную систему на тепловозе. Весь процесс протекает в цилиндре, одновременно со сгоранием топлива. Для преобразования тепла, воздух, попавший в цилиндр, проходит несколько этапов изменения, поддаётся некоторым воздействиям.

Поступивший поток воздуха, под воздействием поршня нагревается, а как результат и сжимается. В это время, к нему через форсунку поступает некоторое количество топлива, по средствам впрыскивания. Внутренняя воздушная среда может нагреваться до 600-650 о С, что больше значений показателей, провоцирующих процесс воспламенения впрыскнутого жидкого топлива. Именно газы, которым присуще высокое давление и такая же температура, приводят поршень в действие при помощи надавливания. Такие газы образовываются после процесса воспламенения и сгорания топлива.

Обеспечение функционирования поршня — процесс, во время которого отдаётся необходимая часть тепла, а отработанные вещества через выпускной клапан выпускаются в атмосферу. Новая воздушная среда сменяет старый воздух и полностью заполняет систему цилиндра. Весь это процесс продолжатся столько, сколько по времени совершаются работы.

Установленные на тепловозах ДВС работающие на основе поршней, обладают рядом достоинств:

  • компактны;
  • обладают min потерями (тепла и гидравлики);
  • max КПД.

Двигатель внутреннего сгорания, установленный в тепловозе, является механизмом, функционирующий по шатунно-кривошипной системе. Комплектация его, кроме шатуна и кривошипа, состоит из поршня и вала. Такое наполнения позволяет преобразовывать движение поршня во вращательное движение вала.

Параметры и наполнение ДВС может быть самым разнообразным, могут различаться скоростью потреблением и передачей энергии, числом встроенных цилиндров, периодичностью вращения валов и иным. Такое разнообразие позволяет удовлетворить различные потребности пользователей.

По способу зажигания топлива различают двигатели низкого и высокого сжатия. Во-первых, зажигание осуществляется принудительно. Во-вторых, при помощи самовоспламенения, и именно такие устанавливаются на тепловозы, ведь отличаются мощностью и своей экономичностью.

На сегодняшний день в разных отраслях используют двигатели внутреннего сгорания двух- и четырёхтактного типов. Один полный оборот коленчатого вала (2 хода поршня) необходимо для обеспечения рабочего цикла у двухтактных двигателей. Два оборота и 4 хода для четырёхтактных, которые в свою очередь обладают min уровнем тепловой напряжённости и расходом топлива.

Двигателя внутреннего сгорания могут различаться между собой по способу смесеобразования:

  • однокамерные (со струйным распыливанием): самые распространённые, ведь обеспечивают минимальный расход при значительных нагрузках. Такие дизели очень требовательны к качеству топлива и конструкции топливной аппаратуры;
  • двухкамерные (вихрекамерные, предкамерные, в поршне с камерой): им присущи значительные тепловые и энергетические потери, поэтому не экономичны, но при этом функционируют при помощи простых насосов и форсунок.

Очень важно выбрать правильный тип дизеля, подходящую форму камеры сжатия, учесть иные моменты, точно предназначенные для предстоящего вида работ и модели техники. Качественный ДВС в первую очередь определяется своей надёжностью, экономичностью, долговечностью и технологическим наполнением.

Дизель-генератор 4Д80Д

Разные части различных моделей маневровых тепловозов могут быть модернизированными несколькими способами. Одним из вариантов усовершенствования грузового тепловоза типа М62У может быть осуществление замены «родных» дизелей на новые дизели модели 4Д80Д. Конструкция новых устройств представляет собой совмещение дизеля и генератора. В данном случае установка двигателя адаптируются к схемам М62У быстро и легко. Организация данного процесса не нуждается во внесении корректив в служебные свойства тепловоза.

Масса дизель-генератор составляет 23 тонны, длина 4635 мм, ширина 1615 мм, высота 3100 мм. Мощность в 1350 кВт и среднюю скорость поршня в 6,75м/с обеспечивают 10 цилиндров.

Встроенный в 4Д80Д коленчатый вал функционирует в двух режимах: на полной мощности и на холостом ходу. В зависимости от чего и зависит частота его вращения. В первом случае коленчатый вал осуществляет 750 оборотов в минуту, во втором, 300 об/мин. Отличается данный агрегат и сравнительно высокими показателями, характеризующими степень нагрузки и наддува, рабочим объемом цилиндра, а также полнотой и своевременностью сгорания топлива.

При установке 4Д80Д, расход топлива уменьшится на 15-20% и будет составлять:

  • 197 г/кВт.ч.: в условиях объекта;
  • 190 г/кВт.ч.: в условиях ISO.

В процессе продуктивного функционирования данные дизеля тепловоза способны прослужить 300000 км, после чего будет необходимо проведение переборки, а после 1500000 км в плановом порядке проводится первый капитальный ремонт. Конструкция 4Д80Д продумана до мелочей, позволяет производить удобное ТО и любой вид ремонтных работ.

Дизель-генератор монтируется на раму, а к ротору генератора подключается коленчатый вал, используется при этом эластичная муфта. Конструкция представляет листы, расположенные по бокам (вертикально и поперечно). Укомплектовано устройство газотрубным наддувом и охладителем для надувочного воздуха.

Дизель-генератор 4Д80Б

На маневровых тепловозах ЧМЭ3 изначально были установлены дизели типа К6S310DR, на смену которым, с целью увеличения работоспособности техники, пришли дизель-генераторы в модификации 4Д80Б. Агрегаты разработаны специально для данной модели тепловоза, в связи с чем процесс адаптации схем двигателя к устройству тепловоза не требует внесение корректировок в настройки тепловоза.

Дизели являются идеальными аналогами устройств мирового производства. В первую очередь выделяются своим техническим уровнем, достаточно экологичны и экономичны. Обладают высоким моторесурсом. При необходимости проведения технического обслуживания или ремонта любой сложности проблем возникнуть не должно.

4Д80Б показал себя как высоконадёжное устройство. В процессе функционирования со стандартными нагрузками и даже после капитального ремонта, дизель функционирует идеально. В комплекте имеются все необходимые запчасти, которые необходимы для осуществления монтажа систем дизель – генератора.

Дизель типа 12ЧН26/27 — это двенадцатицилиндровый V-образный агрегат мощностью 993 кВт. Работая на полной мощности коленчатый вал осуществляет 750 оборотов за минуту (300 на холостом ходу), при этом средняя скорость поршня равняется 6,75 м/с. Удельный расход топлива в условиях объекта и ISO — 201 г/кВт.ч., и 190 г/кВт.ч., соответственно.

Масса 4Д80Б составляет 22500 кг, длина 3990 мм, широта 1616 мм, высота 2840 мм. Среднее значение эффективного давления равно 0,921 мПа. Продуктивное и бесперебойное функционирование дизеля обеспечивается на протяжении длительного времени.

Дизель-генератор 1Д80Б-01

Двигателя внутреннего сгорания с генератором также устанавливаются на магистральные тепловозы 2ТЭ10. В данном случае новый дизель-генератор 1Д80Б-01 меняет старую модель дизель-генератора 10Д100М1.

Установка дизеля унифицированного ряда Д-80 (УМР-Д80) предназначена для модернизации тепловоза, благодаря которой мощность техники увеличилась до 2075 кВт. Системы двигателя и тепловоза адаптируются друг с другом без внесения правок в служебные свойства 2ТЭ10.

Данная модель дизель-генератора превосходит по техническим параметрам иные модели данной серии и является превосходным аналогом двигателей зарубежного производства. 1Д80Б-01 обладает рядом преимуществ, к которым можно отнести:

  • экономичность;
  • экологичность;
  • высокое значение моторесурса;
  • ремонтопригодность.

Процесс разработки, доработки конструкции и наполнения двигателя позволили обеспечить его высокую надёжность во время эксплуатации и даже после капитальных ремонтных работ. На расстоянии до 200000 км дизель способен продуктивно проработать до первой переборки. До капитального ремонта устройство будут служить не меньше 1200000 км. Заводом-изготовителем предусмотрены все необходимые для соединения системы дизель-генератора и тепловоза, детали и комплектующие.

Дизель типа 16ЧН26/27 имеет 16 цилиндров, расположенных в V-образной форме. При массе 29000 кг., длине 6951 мм, широте 1930 мм и высоте 2922 мм 1Д80Б-01 расходует топливо в условиях объекта 204 г/кВт.ч. и при ISO 193 г/кВт.ч.

При максимально эффективной работе, включая всю мощность, коленчатый вал вращается с частотой в 850 оборотов в минуту, а без нагрузки 270 об/м. В среднем достигается скорость поршня в размере 9,0 м/с и эффективное давление в размере 1,176 мПа.

Дизель-генератор 1Д80Б

Двигателем внутреннего сгорания в тепловозах 2ТЭ116, функционирующих на магистральных путях, установленный изначально заводом-изготовителем, является дизель-генератор типа 1А-9ДГ. Для модернизации данных тепловозов штатные дизели меняются на новые дизель-генераторы 1Д80Б.

Системы двигатели и системы тепловоза при установке дизеля унифицированного ряда Д-80 (УМР-Д80) не требуют внесения даже малейших изменений в служебные свойства тепловоза, ведь процесс адаптации проходит идеально.

Дизель-генератор 1Д80Б по своим основным параметрам очень схож с 1Д80Б-01, но всё таки имеет некоторые технические отличия, заключающиеся в:

  • частоте вращения коленчатого вала (1000 при максимальной мощности, 350 — без нагрузок);
  • массе изделия, которое составляет 24655 кг;
  • длине — 5325 мм;
  • ширине — 1615 мм;
  • высоте — 3193 мм.
Читать еще:  Ваз 2110 как помыть двигатель не снимая его

Подсоединение дизель-генератора не составит труда, ведь производитель укомплектовал устройство всеми необходимыми деталями и сборочными единицами.

1Д80Б — двигатель унифицированного мощного ряда, который благодаря своим техническим параметрам является высококачественным аналогом изделия зарубежного производства. Продуманная до деталей конструкция, надёжные и прочные комплектующие позволяют продуктивно использовать данный дизель-генератор в период эксплуатации и даже после КР.

Благодаря экономичности, экологичности, износостойкому мотору и подлежащим ремонту системам дизель-генератор 1Д80Б устойчиво популярен.

Профессия машинист двигателей внутреннего сгорания: смысл работы, зарплата

Ни одно транспортное средство не может функционировать без двигателя внутреннего сгорания. Особенностью данного механизма является то, что процесс сгорания топлива происходит непосредственно внутри двигателя, а энергия, которая при этом вырабатывается, превращается в механическую работу. А для работы с данным прибором введена профессия машинист двигателей внутреннего сгорания.

Описание профессии

Машинист двигателей внутреннего сгорания – это специалист, который знает, каким образом функционирует двигатель внутреннего сгорания, каких видов он бывает, какие особенности строения существуют у разных видов. Кроме того, в его обязанности входит техническое обслуживание и обеспечение бесперебойной работы двигателя, а также всех вспомогательных механизмов.

Рабочий должен проводить текущий ремонт, если же возникшие технические неполадки находятся вне зоны его компетенции, ему необходимо сообщить обо всем руководству. А во время ревизии разбирает элементы двигателей.

Машинист двигателей внутреннего сгорания обязуется своевременно выполнять все поставленные перед ним задачи, соблюдать технику безопасности.

Работать на должности машиниста двигателя внутреннего сгорания имеют право только совершеннолетние после специального обучения. Кроме того, при приеме на работу им необходимо подтвердить уровень своей квалификации, пройдя инструктаж по технике безопасности и охране труда, а также пройти медицинский осмотр на предмет обнаружения возможных противопоказаний к работе. В дальнейшем обследования будут носить регулярный характер, по графику предусмотренному регламентом организации.

Перед допуском к самостоятельной работе машинист двигателей внутреннего сгорания в течение двух недель проходит обязательную стажировку под кураторством более опытного сотрудника. По прошествии пяти лет с момента присвоения квалификации специалисту по двигателям внутреннего сгорания необходимо пройти курсы переподготовку по данной специальности.

До начала работы машинисту необходимо сделать следующее: ознакомиться с записями в вахтовом журнале, которые сделал сменщик, переодеться в специальную одежду, проверить работоспособность всех вверенных приборов. Перед тем, как машинист запустит двигатель, он должен провести визуальный осмотр механизма, проверить надежность креплений, уровень масла. Если при осмотре были замечены неполадки, проводить запуск двигателя категорически запрещено.

Во время работы двигателя машинист должен отслеживать показания приборов, устранять отклонения, регулировать поддержание температуры масла и воды. При возникновении неисправности любого уровня, ему необходимо незамедлительно прекратить работу и сообщить о возникшей ситуации руководству.

Где можно выучиться профессии машинист двигателей внутреннего сгорания?

Получить образования машиниста можно несколькими способами: поступить в профильный колледж или техникум, куда принимают после 9 или 11 класса школы, либо пройти специальные курсы на базе образовательного центра, который имеет соответствующие разрешающие документы.

Срок прохождения образовательной программы завит от следующих факторов: место получения образования, форма его получения и какой уровень образования был получен до этого. Таким образом, учиться можно как три месяца, так и четыре года.

При этом необходимо иметь в виду, что от того, какой именно способ получения выбранной специализации, зависит глубина и качество полученных знаний.

А уже на самом мероприятии начинающий специалист в обязательном порядке проходит стажировку под кураторством более опытного машиниста. После пяти лет работы по данному профилю ему необходимо будет пройти курсы повышения квалификации.

Разряды профессии машинист двигателей внутреннего сгорания

У данной специальности шесть уровней квалификации: со второго по седьмой. При этом ключевым отличием мощность системы.

Машинист двигателей внутреннего сгорания 2 разряда

Машинист двигателей внутреннего сгорания 3 разряда

Машинист двигателей внутреннего сгорания 4 разряда

Машинист двигателей внутреннего сгорания 5 разряда

Машинист двигателей внутреннего сгорания 6 разряда

Машинист двигателей внутреннего сгорания 7 разряда

Личностные качества профессии машинист двигателей внутреннего сгорания

Во время работы машинист должен проявить такие качества, как: внимательность, ответственность, собранность, дотошность к деталям. Ему необходимо уметь концентрироваться и быстро реагировать на внешние изменения.

Также к работе не могут быть допущены лица с хроническими заболеваниями сердечно-сосудистой системы, органов дыхания, позвоночника, суставов, с проблемами слуха или же зрения, а также нервными расстройствами и психическими заболеваниями.

Уровень заработной платы профессии машинист двигателей внутреннего сгорания

Профессия машинист двигателей внутреннего сгорания является весьма высокооплачиваемой, ее средний уровень заработной платы составляет 74 000 рублей. А самый высокий оклад в 90 000 рублей получают специалисты в Красноярском крае.

Плюсы и минусы профессии машинист двигателей внутреннего сгорания

К положительным моментам данной специальности можно отнести:

востребованность на рынке труда;

высокий уровень заработной платы.

А к отрицательным моментам стоит отнести:

большой уровень ответственности;

сидячий образ жизни;

для работы в данной должности предпочтение отдается мужчинам.

Аксиальный двигатель внутреннего сгорания Г.Л.Ф. Треберта (США)

В начале десятых годов прошлого века возникла новая тенденция в двигателестроении. Инженеры нескольких стран занялись созданием т.н. аксиальных двигателей внутреннего сгорания. Компоновка мотора с параллельным размещением цилиндров и главного вала позволяла уменьшить габариты конструкции с сохранением приемлемой мощности. Ввиду отсутствия устоявшихся альтернатив силовые установки этого класса представляли большой интерес и регулярно становились предметами новых патентов.

В 1911 году к работам по тематике аксиальных двигателей подключился американский конструктор Генри Л.Ф. Треберт. Работая в собственной мастерской в Рочестере (штат Нью-Йорк), он разработал свой вариант перспективного двигателя, который, в первую очередь, предназначался для самолетов. Предполагаемая сфера применения сказалась на основных требованиях к конструкции. Новый двигатель должен был иметь минимально возможные габариты и вес. Анализ перспектив различных идей и решений привел к уже известным выводам: одно из самых лучших соотношений размеров, веса и мощности дает аксиальная компоновка.

Проект Треберта был готов к осени 1911 года. В октябре инженер подал заявку в патентное бюро, но ее одобрения пришлось ждать несколько лет. Патент был выдан только в ноябре 1917 года – через шесть лет после подачи документов. Тем не менее, конструктор получил все необходимые документы, которые, в частности, позволили ему остаться в истории как создателю интересного проекта.

Г.Л.Ф. Треберт решил строить новый авиационный двигатель по аксиальной схеме с воздушным охлаждением цилиндров. С целью улучшения охлаждения, подобно другим разработкам того времени, новый мотор планировалось делать ротативным с поворачивающимся блоков цилиндров. Кроме того, автор проекта предложил использовать новый механизм преобразования движения цилиндров во вращение вала. Предыдущие аксиальные двигатели для этого использовали шайбовый механизм. В проекте Треберта для этих целей предлагалось использовать коническую зубчатую передачу.

Основной деталью двигателя Треберта был цилиндрический картер, состоящий из крупной «банки» и крышки с болтовым соединением. Внутри картера размещался основной механизм. Поскольку двигатель был ротативным, на донной части картера предусматривались жесткие крепления для вала, на котором должен был устанавливаться воздушный винт. Кроме того, внутри картера предусматривались подшипники для главного вала, который предлагалось жестко закреплять на мотораме самолета.

В крышке предусматривались отверстия для установки литых цилиндров. Известно о существовании двух вариантов двигателя Треберта. В первом применялись четыре цилиндра, во втором – шесть. Патент 1917 года был выдан на шестицилиндровый двигатель. Следует отметить, количество цилиндров не сказывалось на общей компоновке двигателя и влияло только на размещение конкретных агрегатов. Общая структура двигателя и принцип его работы не зависели от числа цилиндров.

Внутри цилиндров размещались поршни с шатунами. Ввиду использования сравнительно простого механизма передачи Треберт использовал качающееся крепление шатунов, которые могли двигаться только в одной плоскости. В верхней части цилиндра предусматривался патрубок для подачи бензовоздушной смеси от карбюратора. Патрубок имел Г-образную форму и своим верхним концом соприкасался со специальным полым барабаном на главном валу двигателя. В стенке барабана предусматривалось окно для подачи смеси. При вращении подвижного блока двигателя впускные патрубки последовательно соединялись с окном барабана и подавали смесь в цилиндр. Кроме того, имелись клапаны для сброса выхлопных газов. Отдельный выхлопной коллектор не предусматривался, газы выбрасывались через патрубок цилиндра. Зажигание производилось свечами, соединенными с магнето. Последнее, согласно патенту, размещалось рядом с валом воздушного винта.

Читать еще:  Что такое угол опережения в дизельном двигателе

Более ранние аксиальные двигатели Смоллбоуна и Макомбера имели в своем составе механизм «планшайба-стержни». Такая система обеспечивала требуемые характеристики, но была сложной с точки зрения конструкции, эксплуатации и обслуживания. Генри Л.Ф. Треберт предложил использовать для тех же целей коническую зубчатую передачу. На жестко закрепленном главном валу размещалось зубчатое колесо, которое отвечало за поворот всей конструкции двигателя. С ним контактировали 4 или 6 зубчатых колес (по числу цилиндров) меньшего диаметра. Эти шестерни были связаны с кривошипами и шатунами поршней.

Во время работы двигателя поршни, двигаясь вниз и вверх относительно цилиндра, через шатуны и кривошипы должны были вращать малые шестерни. Последние, находясь в сцеплении с жестко закрепленным главным зубчатым колесом, заставляли блок цилиндров и картер вращаться вокруг главного вала. Вместе с ними должен был вращаться и воздушный винт, жестко закрепленный на картере. За счет вращения предполагалось улучшить обдув головок цилиндров с целью более эффективного охлаждения.

Запатентованный вариант двигателя Треберта имел цилиндры с внутренним диаметром 3,75 дюйма (9,52 см) и ходом поршня длиной 4,25 дюйма (10,79 см). Общий рабочий объем двигателя составлял 282 куб. дюйма (4,62 л). В составе двигателя планировалось использовать карбюратор фирмы Panhard и магнето компании Mea. Предлагаемый двигатель, по расчетам, мог развивать мощность до 60 л.с.

Характерной особенностью аксиальных двигателей внутреннего сгорания являются сравнительно малые габариты и вес конструкции. Двигатель Треберта не стал исключением из этого правила. Он имел максимальный диаметр 15,5 дюйма (менее 40 см) и общую длину 22 дюйма (55,9 см). Общий вес двигателя со всеми агрегатами составлял 230 фунтов (менее 105 кг). Таким образом, удельная мощность составляла 1,75 л.с. на килограмм веса. Для авиационных двигателей того времени это было неплохим достижением.

Аксиальный авиационный двигатель конструкции Г.Л.Ф. Треберта стал предметом патента, выданного в ноябре 1917 года. Дальнейшая судьба проекта достоверно неизвестна. В некоторых источниках упоминается, что Треберт смог начать серийное производство изделий собственной разработки, но подробности этого отсутствуют. Дефицит информации позволяет предполагать, что двигатели Треберта не заинтересовали потенциальных покупателей. В противном случае история сохранила бы информацию об использовании таких моторов в качестве силовой установки каких-либо самолетов. Вероятно, ввиду позднего получения патента конструктор не успел представить свою разработку в то время, когда она была актуальна и представляла интерес. Как результат, двигатели, если и производились серийно, не имели большого успеха.

Разница между движителем и двигателем

Часто в разговорной речи и печатных источниках встречается смешивание понятий «движитель» и «двигатель». Их употребляют неправильно, когда называют узлы машин или механизмов. Некоторые люди ошибочно считают такие слова синонимами, но это неверно. Названия обозначают устройства с разными функциями. При таком применении терминов происходит подмена понятий, нарушается логичность высказывания. Употребление слов в несвойственных им значениях – лексическая ошибка. Для поиска истины рассмотрим подробно каждый объект и сравним между собой.

Движитель

Каждое транспортное средство имеет движитель – механизм, который сообщает ему движение, перемещает в пространстве. Для этого он использует энергию от постороннего источника. Им может быть специальный мотор или внешняя среда.

Основные виды этого устройства:

  • Колесо.
  • Гусеница.
  • Шнек.
  • Парус.
  • Весло.
  • Гребной винт.
  • Гребное колесо.
  • Водомётный движитель.
  • Лопастной винт.
  • Реактивное сопло.

Колесо – одно из самых древних и распространённых видов движителя. Оно имеется у подавляющего большинства сухопутных транспортных средств. У обычного автомобиля их четыре. Ведущие колёса получают вращение через трансмиссию от встроенного мотора. При движении они взаимодействуют с покрытием дороги. Чем лучше их сцепление с полотном трассы, тем быстрее можно разогнать машину, увеличить тягу. На бездорожье используют устройства с более высоким коэффициентом сцепления: гусеницы или шнек.

До изобретения паровых машин основным видом движителя морского транспорта был парус. Он преобразует бесплатную силу ветра в поступательное движение судна по воде. Но использовать его можно только при движении воздушных масс. В штиль такие корабли стоят или применяют другие способы для перемещения.

Изобретатели первых летательных аппаратов придумали лопастной (воздушный) винт. Лопасти этого устройства при вращении захватывают потоки воздуха и отбрасывают их назад, благодаря чему создаётся усилие по перемещению самолёта вперёд. Чем быстрее вращается винт, тем больше создаётся тяга.

У человека таким устройством будут собственные ноги. Но ситуация кардинально изменится, если он пересядет на велосипед или воспользуется каким-то видом транспорта.

Двигатель

Люди не могли всё время зависеть от сил природы. Для облегчения своего физического труда они изобрели механизм, который мог преобразовывать какой-либо вид энергии в полезную работу. Его назвали двигателем. Их условно делят на первичные и вторичные. Первые превращают готовые природные ресурсы в механическую работу. Вторые используют энергию, накопленную или выработанную другими источниками.

Некоторые их виды:

  • Водяное колесо.
  • Ветряное колесо.
  • Паровая машина.
  • Двигатель Стирлинга.
  • Паровая турбина.
  • Двигатель внутреннего сгорания.
  • Электродвигатели.
  • Пневмодвигатели и гидромашины.

Водяное колесо – одно из самых древних изобретений. Его широко применяли ещё народы стран Древнего мира. Оно трансформирует потенциальную энергию падающей воды во вращение, которое передаётся на исполняемые механизмы.

В двигателе внутреннего сгорания для получения полезной работы используется эффект резкого расширения топливовоздушной смеси при воспламенении в замкнутом пространстве. Полученные газы давят на поршень и перемещают его. Возвратно-поступательное движение последнего преобразуется кривошипно-шатунным механизмом во вращательное.

Электродвигатели для своей работы используют электричество, которое получено на других устройствах. Они могут питаться с помощью прямого подключения к сети или от накопительного источника (батарея, аккумулятор).

Таким образом, любое устройство, которое получает механическую энергию из её другого вида можно назвать двигателем. Например, велосипедист является таким для своего двухколёсного друга. Он получает химическую энергию от пищи, а отдаёт велосипеду механическую через вращение педалей.

Что общего между ними

Эти два понятия очень схожи в написании, но принцип действия и конструкция таких механизмов разные. И всё же у них есть общие особенности:

  • У обоих этих устройств одна цель – создание движения. Оба обязательно производят его. Это может быть поступательное перемещение чего-то, вращение вала (оси) или сразу то и другое.
  • Оба устройства служат для преобразования одного вида энергии в другой. Парус собирает и трансформирует силу ветра в поступательное движение судна. Электродвигатель, потребляя электрическую энергию, создаёт вращение, которое потом используется в других частях механизма.

Отличия понятий

  1. Движитель потребляет энергию природного источника или двигателя для передвижения транспортного средства. К примеру, весло при перемещении в воде вызывает смещение лодки. Но оно это делает благодаря сокращению мышц человека. Усилия гребца приводят к поступательному движению. Двигатель – это энергосиловое устройство, которое переводит какой-либо вид энергии в механическую работу, но она не обязательно вызывает перемещение чего-либо. Электрический мотор во включенном состоянии просто вращает свой вал и не более того, если к нему не подключен исполнительный механизм. Он перерабатывает электрическую энергию в механическое вращение. Гребной винт корабля при работе захватывает воду и отбрасывает назад, благодаря чему судно перемещается. Дизельная установка, которая даёт вращение винту, преобразует энергию топлива в механическую работу вала с гребным винтом.
  2. Одним из важных свойств первого механизма является взаимодействие с окружающей средой. Ведущие колёса легкового автомобиля при вращении перемещают его. Чем лучше будет сцепление с полотном дороги, тем эффективнее работа. Поэтому для некоторых транспортных средств применяют гусеницы или другие устройства, которые улучшают соприкосновение с поверхностью. Двигатель внутреннего сгорания машины, сжигая топливо, даёт колёсам вращение, но не соприкасается с дорогой и никак на неё не влияет.
  3. Движитель при выполнении работы движется сам, а двигатель создаёт движение для передачи исполнительным механизмам, частям устройства. При прекращении движения первого – остановится весь объект.

Обобщим написанное. Можно сказать, что движитель это то, что перемещает объект (транспортное средство, подъёмный механизм, часть станка), а двигатель вырабатывает необходимую энергию для него.

И тот и другой важные составляющие любого сложного механического устройства.

Моторы его сердца. Как Готтлиб Даймлер изобретал моторы на бензине

Готлиб Даймлер, пожалуй, самый известный из конструкторов эпохи становления бензиновых двигателей. Его фирма, пройдя через множество трансформаций превратилась в большой концерн, который выпускает не только легковые автомобили марок Мерседес и Смарт, но и грузовики, а также иную тяжелую технику. Концерн владеет 15-процентным пакетом акций Камаза и более 22% Airbus Group. Кто же стоял у истоков этого промышленного гиганта и как все начиналось?

Читать еще:  Щелчок в стартере после запуска двигателя

Готтлиб Даймлер родился в небольшом городе Вюртемберг неподалеку от Штутгарта в семье пекаря. Детство мальчика проходило спокойно, он ходит в воскресную и художественную школы. Однако увлеченность рисованием вылилась в иное творчество. Сразу после школы он устроился подмастерьем в оружейную мастерскую и стал помогать изготавливать двухствольные охотничьи ружья у мастера Риделя. Именно в эти годы он окончательно решил стать инженером.

В 18-летнем возрасте Готлиб Даймлер получил лицензию оружейного мастера и ушел в эльзасскую инженерную компанию Фердинанда фон Штайнбайса, а спустя пять лет накопил на учебу в политехнической школе Штутгарта на факультете машиностроения.

Еще будучи студентом последнего курса, в 1862 году, Дамлер устроился на работу на фабрику металлоизделий в Гайслингене, на должность конструктора. Там и произошла знаменательная встреча, предопределившая жизнь и дальнейшую деятельность мастера. При заводе был приют для детей-сирот, которые трудились на производстве. Среди смышленых мальчиков Готлиб присмотрел 15-летнего чертежника Вельгельма Майбаха, который позднее стал верным другом и соратником Даймлера.

Два молодых человека мечтали создавать новые двигатели, используя необычные виды топлива, такие как керосин и бензин. В то время их мысли казались чрезвычайно смелыми, так как керосин и бензин продавался в аптеках в виде средства для умывания и как обеззараживатель. Существующие моторы работали или на паровой тяге, или на сырой нефти или горючем газе. Однако молодые инженеры не оставляли мечты и вскоре им представилась возможность попробовать себя в двигателестроении.

Работа у Николауса Отто

В 1872 году Даймлера заметил будущий изобретатель четырехтактного двигателя внутреннего сгорания Николаус Отто и пригласил его принять участие в становлении небольшой фабрики Deutz-AG-Gasmotorenfabrik, где должны были производиться стационарные двигательные установки для промышленных производств. Даймлер стал директором завода, Отто продолжал экспериментировать и изобретать, а Майбах был назначен главным конструктором.

Опытно-конструкторские работы над новым 4-тактным двигателем внутреннего сгорания продолжались около 5 лет. В итоге, на деньги инвесторов были построены первые образцы, которые и начали испытываться в заводской лаборатории в 1876 году. Однако новый мотор работал не стабильно, сказывались инженерные просчеты в конструкции.

Готлиб Даймлер предложил взяться за новый мотор 2-тактной схемы. Владелец предприятия не желал распылять средства и отказал молодым инженерам. Существующий образец начали производить. Однако инженеры занялись конструированием самостоятельно в тайне от работодателя. И с этого шага началось их главное дело. Видя перспективность своей конструкции Готлиб Даймлер и Вельгельм Майбах разрывают с предприятием Николауса Отто, продают свои акции за 75 тысяч марок и получают стартовый капитал для основания собственной фабрики, где намереваются выпускать собственные двигатели на бензине.

Мотор «Дедушкины часы»

В 1882 году Даймлер и Майбах с семьями переехали в Штутгарт и купили дом с участком земли в пригороде Каннштате, где и основали лабораторию. Через три года, осенью 1885 года работы над созданием первого двигателя Даймлера были завершены. За основу конструкции инженеры взяли двигатель Отто, у которого была переработана схема подачи топлива и камера сгорания, рассчитанная на бензин. Это топливо показалось Готлибу Даймлеру перспективным по причине его способности воспламеняться даже при очень низких температурах.

Опытная модель двигателя имела единственный горизонтальный цилиндр рабочим объемом в 264 куб.см с калильной свечой внутри, воздушное охлаждение, чугунный маховик на валу, а также впускной и выпускной клапаны без газораспределительного механизма. Эта примитивная конструкция во время работы начинала забавно стрекотать, за что получила от конструкторов прозвище «дедушкины часы».

Мотор весил 50 кг и имел высоту в 76 см и при 650 оборотах выдавал мощность в 0,5 лошадиной силы. Главное, что такой мотор был намного легче, чем паровики и не требовал столь же кропотливого обслуживания. Компактный мотор был готов к работе практически сразу же, в то время как паровики требовали разведения паров. Кроме того, бензиновый агрегат обладал стабильностью в работе при разных температурах, отчего не зависел от погодных условий и мог использоваться круглогодично. Уже вскоре мощность мотора удалось поднять вдвое, а затем началось его опытное применение.

Одна лошадиная сила

В этом же 1885 году инженеры установили ДВС на деревянный велосипед, создав тем самым первый в мире мотоцикл, на котором Вельгельм Майбах развил скорость на пляже реки Некка в 12 км/ч и проехал три километра.

Почти сразу инженеры решили приспособить свой мотор и для лошадиной повозки. В 1886 году на том же пляже они испытали экипаж, который приводился в действие ДВС. Это еще не была машина, а лишь ее экспериментальный образец.

Свое применение новое изобретение нашло в качестве двигателя для моторных лодок. Внеся небольшие изменения в конструкцию и доведя модность до 1,1 лс первый в мире мотор на бензине установили на 4,5 метровый бот. Такая лодка разгонялась до 11 км/ч и не выдавала клубов черного дыма, как паровые катера, за что и полюбилось покупателям. Предприятие Даймлера и Майбаха получило множество заказов и стало процветать.

Спрос на лодочные моторы Даймлера-Майбаха рос лавинообразно. В 1887 году была продана лицензия на производство ДВС. Эти 1,1-сильные агрегаты даже поднимались в воздух на первых аэростатах в 1888 году. С них начиналась воздухоплавательная история дирижаблей.

Между тем оба изобретателя не оставляли надежды на разработку собственного автомобиля. Вскоре он был построен и показан в октябре 1889 года на выставке в Париже. Машина имела открытый 4-колесный кузов, напоминающий лошадиную пролетку, 2-цилиндровый V-образный мотор собственной конструкции, 4-ступенчатую коробку передач, водяное охлаждение, систему газораспределения с Т-образными клапанами. В отличие от трехколесного автомобиля Карла Бенца этот аппарат был гораздо устойчивее, так как имел четыре колеса.

На земле, в воде и в небесах

В конце 1889 года семью Готтлиба Даймлера потрясла трагедия. Умерла его жена Эмма, что серьезно повлияло и на здоровье конструктора.

Между тем, компанию ждали большие перемены. Завод получил финансовые вливания и трансформировался в корпорацию Daimler Motoren Gesellshaft или DMG. Техническим директором компании стал Даймлер, а главным конструктором — Майбах.

Эмблемой компании была выбрана трехлучевая звезда, заключенная в круг. Эта эмблема сейчас принадлежит марке Mercedes-Benz. Она означала, что компания изготавливает двигатели для трех стихий: для земли, воды и для небес.

Вскоре моторостроительная корпорация стала получать военные заказы и вместе с инвестициями к управлению заводом пришли совсем иные люди.

Набирающей мощь Германии требовались моторы для дирижаблей и для военно-морского флота, а убежденность Готлиба Дайлера в перспективности автомобильной техники только раздражала совет директоров. В итоге, вместе с разработкой новых моторов, новые управленцы стали выдавливать прежних руководителей. Уже через год после реорганизации предприятия Совет директоров вынудил покинуть свой пост главного инженера Вельгельма Майбаха, а Готлиб Даймлер фактически потерял контроль над своим заводом. Измотанный смертью жены и трудностями на службе, он в 1992 году слег с инфарктом и оставил компанию новым директорам.

Между тем дело великих конструкторов жило. Бензиновые моторы действительно завоевывали пространства и поднимались в небеса. Последующая борьба акционеров и споры о путях развития не сломили прогрессивного духа. Со временем Daimler Motoren Gesellshaft (DMG) превратилась в крупную военно-промышленную корпорацию. Смерть Готлиба Даймлера от сердечного приступа в 1900 году не позволила ему стать свидетелем, одновременно триумфа и трагедии его детища. Моторы DMG воевали на полях сражений Первой мировой и стали основой авиации Германии.

До сих пор корпорация Daimler является ключевой компанией в Германии и в Европе. Производство автомобилей Mercedes-Banz и «Daimler Trucks» лишь малая ее часть.

В настоящее время Daimler AG владеет долями в следующих компаниях: Mitsubishi Fuso Truck and Bus Corporation (85,0 % акций), Automotive Fuel Cell Cooperation (50,1 %). Daimler AG также является крупнейшим владельцем и поставщиком Airbus Group.

По прежнему трехлучевая звезда Готлиба Даймлера господствует в трех средах: на земле, воде и в воздухе.​

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector