Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основные эксплуатационные дефекты гильз цилиндров двигателей внутреннего сгорания автомобилей

Основные эксплуатационные дефекты гильз цилиндров двигателей внутреннего сгорания автомобилей

Рубрика: Технические науки

Дата публикации: 02.03.2015 2015-03-02

Статья просмотрена: 23209 раз

Библиографическое описание:

Захаров, Ю. А. Основные эксплуатационные дефекты гильз цилиндров двигателей внутреннего сгорания автомобилей / Ю. А. Захаров, Р. Р. Булатов. — Текст : непосредственный // Молодой ученый. — 2015. — № 5 (85). — С. 148-150. — URL: https://moluch.ru/archive/85/15984/ (дата обращения: 31.08.2021).

Техническое состояние гильз цилиндров во много определяет тягово-экономические показатели двигателя и его ресурс. Различают несколько основных эксплуатационных дефектов гильз ДВС, классификация и причины возникновения, которых, а также способы устранения рассмотрены в данной статье.

Ключевые слова: гильза цилиндра, двигатель внутреннего сгорания, эксплуатационный дефект, расход топлива, компрессия, износ, трещины.

Гильза цилиндра двигателя внутреннего сгорания представляет собой цилиндрическую вставку, формирующую рабочий объем двигателя и определяющая положение поршня при его движении. От технического состояния гильз цилиндра ДВС зависят такие параметры как мощность, расход топлива, компрессия, расход масла и так далее [1–3].

Основные дефекты гильз цилиндров ДВС, образующиеся при эксплуатации: трещины, износ наружной поверхности, излом бурта, износ посадочных поясков, износ внутренней (рабочей) поверхности.

Трещины на поверхности гильз цилиндров могут возникать от перегрева ввиду превышения предельно допустимой нагрузки на двигатель, неполноценной работы системы охлаждения, под воздействием ударных нагрузок, из-за «размораживания» охлаждающей жидкости двигателя или при нарушении технологии ремонта (перетяжка болтов, перекосы при запрессовке и так далее) [4–6].

В результате чрезмерного нагрева, а иногда и от резкого охлаждения в гильзах появляться микротрещины, которые под действием температуры и ударных нагрузок могут привести к физическому разрушению гильзы, что в конечном итоге вызовет потерю работоспособности цилиндропоршневой группы и двигателя в целом.

При дефектации трещины в гильзах можно обнаружить с помощью рентгенографического исследования, с помощью ориентирования металлических опилок вдоль трещины под воздействием магнитных полей или путем применения смазок и жидкостей, имеющих высокую проникающую способность. При обнаружении трещин гильзы не подлежат ремонту или восстановлению и выбраковываются [4, 7].

2. Износ наружной поверхности.

Как правило, большая часть наружной поверхности находиться в непосредственном контакте с охлаждающей жидкостью, в связи с этим, основными причинами повреждения этой поверхности гильз является квитанционное изнашивание и коррозионные процессы. Величина повреждений наружной поверхности может быть значительно снижена путем применения специализированных охлаждающих жидкостей (антифризов), имеющих в своем составе антикоррозионные, противопенные и другие присадки [2, 5–8].

Наличие дефектов наружной поверхности гильз может приводить к протечкам охлаждающей жидкости в картер двигателя и взаимодействия с моторным маслом, в результате чего образуется масляная эмульсия, не способная полноценно выполнять свою работу. Либо возможно загрязнение охлаждающей жидкости моторным маслом.

Устранение таких дефектов возможно путем нанесения полимерных композиций на изношенные поверхности [1–3, 7–8].

Основными причинами излома бурта гильзы являются: наличие посторонних частиц при запрессовке; неровности и перекосы в области седла буртика в блоке цилиндров; неподходящая по высоте и размерам прокладка головки блока цилиндров; нарушения технологии обработки при ремонте и восстановлении.

Иногда головка блока цилиндров имеет канавку по всему периметру, в которую входит противопожарный борт, причем головка и гильза цилиндра не должны соприкасаться. Если вследствие перекоса или повреждения головка блока требует выравнивания, канавка должна быть пропорционально увеличена. В противном случае есть опасность того, что усилие будет направлены не на прокладку, как должно быть, а на противопожарный борт гильзы цилиндра.

Если данный дефект гильзы не будет вовремя обнаружен, то после пуска двигателя сломанная гильза сдвинется в направлении коленчатого вала, и как только место излома окажется на высоте первого поршневого кольца, поршневое кольцо выскочит выше места излома. При обратном ходе поршня он вдавит гильзу цилиндра. Вращающийся коленчатый вал разобьет гильзу, поршень и шатун также будут повреждены.

Устранить такой дефект можно с помощью пластической деформации, наплавки или приварки стальной ленты с последующей механической обработкой.

4. Износ посадочных поясков гильзы.

Износ посадочных поясков частично связан с кавитационным изнашиванием. Признаком дефекта гильз являются глубокие раковины на поверхности поясков, что является следствием явления кавитации или коррозии.

В процессе работы возникает вибрация гильзы, что также вызывает износ посадочных поясков гильзы.

В реальных условиях эксплуатации двигателей возможно появление овальности посадочных поясков гильзы, вызванное кавитационным разрушением или отложением накипи в зазорах посадочных поясков гильзы в блоке.

Устранить подобный дефект можно также с помощью пластической деформации, наплавки или приварки стальной ленты с последующей механической обработкой.

5. Износ внутренней поверхности цилиндров.

Во время работы двигателя зеркало цилиндров подвергается абразивному и механическому изнашиванию вследствие проникновения в двигатель пыли. Много пыли попадает в цилиндры с воздухом через впускной трубопровод, если имеются неплотности в месте его крепления, или с топливом и маслом при их небрежном хранении.

Механическое изнашивание зеркала гильзы цилиндра больше в верхней части, чем в нижней, так как в верхней части давление значительно выше. Когда в конце такта сжатия в цилиндре сгорает рабочая смесь, то резко повышается давление образовавшихся горячих газов, и первое компрессионное кольцо сильно прижимается к зеркалу цилиндра.

В ВМТ скорость поршня снижается до нуля, масляная пленка выгорает, и первое поршневое кольцо вступает непосредственно в контакт с зеркалом цилиндра. При движении поршня вниз (в первый момент) происходит интенсивное изнашивание зеркала цилиндра и поршневого кольца.

Кроме износа по длине также наблюдается износ в направлении, перпендикулярном оси коленчатого вала, т. е. овализация гильз. Овализация гильз цилиндров вызывается как неравномерностью изнашивания, так и остаточными деформациями, возникающими от сил давления газов и бокового усилия поршня. Наибольшая овальность гильзы происходит в верхнем поясе в зоне расположения верхнего поршневого кольца при положении поршня в верхней мертвой точке.

Устранить износ внутренней поверхности гильзы можно с помощью растачивания, хонингования, шлифования, наплавки, осаждением гальванопокрытий, металлизацией [8].

Таким образом, гильзы цилиндров двигателей внутреннего сгорания при работе испытывают большие нагрузки, они подвержены пяти основным эксплуатационным дефектам, каждый из которых имеет свои причины для появления и может быть устранён тем или иным способом, применяемым в авторемонтном производстве.

1. Захаров, Ю. А. Анализ способов восстановления корпусных деталей транспортно-технологических машин и комплексов [Текст] / Ю. А. Захаров, Е. В. Ремизов, Г. А. Мусатов // Молодой ученый. — 2014. — № 19. — С. 202–204.

2. Захаров, Ю. А. Основные дефекты корпусных деталей автомобилей и способы их устранения, применяемые в авторемонтном производстве [Электронный ресурс] / Ю. А. Захаров, Е. В. Ремзин, Г. А. Мусатов // Инженерный вестник Дона: электронный научный журнал. № 4, 2014. URL: www.ivdon.ru/uploads/article/pdf/IVD_48_Zaharov.pdf_b512b82f57.pdf

3. Захаров, Ю. А. Упрочнение деталей автомобилей типа «вал» и «ось» [Текст] / Ю. А. Захаров, Е. В. Ремизов, Г. А. Мусатов // Молодой ученый. — 2014. — № 20. — С. 141–143.

4. Захаров, Ю. А. Основные способы упрочнения рабочей поверхности гильз цилиндров двигателей автомобилей [Текст] / Ю. А. Захаров, Л. А. Рыбакова // Молодой ученый. — 2015. — № 2. — С. 157–160.

Читать еще:  Что такое электрическое соединение 2 двигателя и коробки передач

5. Голубев, И. Г. Мониторинг технологических процессов восстановления деталей [Текст] / И. Г. Голубев, В. В. Быков, А. Н. Батищев, В. В. Серебровский, И. А. Спицын, Ю. А. Захаров // Технический сервис в лесном комплексе / Сб. материалов. науч.-практ. конф. — Москва: МГУЛ, 2000.– С.31.

6. Обеспечение работы мобильных машин в условиях отрицательных температур [Текст] / Ю. А. Захаров, Е. Г. Рылякин, И. Н. Семов [и др.] // Молодой ученый. — 2014. — № 17. — С. 56–58.

Во время работы двигателя внутреннего сгорания в цилиндре

Ход поршня — это расстояние от верхней до нижней мертвой точки. По величине ход поршня равен двум радиусам кривошипа.

Камерой сгорания называется пространство в цилиндре над поршнем при положении его в ВМТ .

Рис. 1. Схема и основные положения кривошипно-шатунного механизма двигателя внутреннего сгорания:
1 — цилиндр; 2 — поршень; 3 — шатун; 4 — кривошип

Рабочий объем цилиндра — объем, освобождаемый поршнем при его перемещении от ВМТ к НМТ .

Полный объем цилиндра — сумма его рабочего объема и объема камеры сгорания.

Рабочим объемом или литражом двигателя называется рабочий объем всех цилиндров двигателя, выраженный в литрах.

Степень сжатия двигателя — отношение полного объема цилиндра к объему камеры сгорания.

Рабочий цикл четырехтактного карбюраторного двигателя. Такты и их характеристика

В четырехтактном карбюраторном двигателе рабочий цикл совершается за два оборота коленчатого вала, или четыре хода поршня, и состоит из тактов: впуска, сжатия, расширения (рабочий ход) и выпуска.

Тактом называется процесс, происходящий в цилиндре при движении поршня от одной мертвой точки к другой.

Такт впуска. Во время такта впуска поршень перемещается от ВМТ до НМТ и цилиндр заполняется горючей смесью; впускной клапан открыт, выпускной закрыт. При движении поршня вниз объем над ним увеличивается и в цилиндре создается разрежение, вследствие чего в цилиндр поступает горючая смесь, которая смешивается с отработавшими газами. Получившаяся смесь называется рабочей. Давление в конце такта впуска равно примерно 0,7—0,8 кгс/см2 (ниже атмосферного вследствие сопротивления впускной системы), температура смеси 100—130 °С.

Такт сжатия. При этом такте происходит сжатие рабочей смеси, что способствует более быстрому сгоранию и получению большого давления газов в цилиндре. При сжатии поршень перемещается от НМТ до ВМТ . Впускной и выпускной клапаны закрыты. В конце такта сжатия смесь занимает объем камеры сгорания. Чем больше сжимается рабочая смесь (выше степень сжатия), тем выше при сгорании давление газов на поршень и экономичнее работа двигателя.

Однако предельные значения степени сжатия для карбюраторных двигателей ограничиваются свойствами применяемого топлива и в основном его антидетонационной стойкостью. Чрезмерно высокая степень сжатия может привести к нарушению нормального процесса ее сгорания (детонации). В результате этого при работе двигателя появляются резкие металлические стуки, снижаются его мощность и экономичность. Поэтому степень сжатия карбюраторных двигателей не может быть выше 8—11. К концу такта сжатия давление в цилиндре составляет 8—12 кгс/см2, а температура смеси 450—500 °С.

Такт расширения (рабочий ход). При рабочем ходе поршень перемещается вниз под действием давления газов, приводя через шатун во вращение коленчатый вал.

В конце такта сжатия в цилиндр проскакивает электрическая искра, воспламеняющая сжатую рабочую смесь. Смесь очень быстро сгорает и выделяет большое количество тепла. В результате сильного нагревания газов, образовавшихся при сгорании, давление в цилиндре резко возрастает, и поршень под действием этого давления перемещается от ВМТ до НМТ , совершая рабочий ход. Впускной и выпускной клапаны при этом закрыты.

Рис. 2. Рабочий цикл четырехтактного карбюраторного двигателя:
1 — впускной клапан, 2 — свеча зажигания; 3 — выпускной клапан; 4— поршень

В момент сгорания рабочей смеси температура газов в цилиндре составляет 1800—2000 °С, а давление 25—30 кгс/см2. В конце рабочего хода давление в цилиндре падает до 3— 4 кгс/см2, а температура до 1100—800° С.

Такт выпуска. При этом такте происходит очистка цилиндра от отработавших газов. Впускной клапан закрыт, выпускной открыт. Поршень перемещается от НМТ до ВМТ и вытесняет отработавшие газы через выпускной клапан в атмосферу. Давление в конце такта выпуска составляет 1,05—1,15 кгс/см2, а температура 300—400 °С.

Таким образом, в четырехтактном двигателе коленчатый вал вращается под действием давления газов только при рабочем ходе. При совершении вспомогательных тактов (впуска, сжатия, вьипуска) противодавление действующих на поршень газов создает сопротивление вращению вала, для преодоления которого к валу необходимо приложить внешний момент. Для повышения равномерности вращения коленчатого вала и осуществления вспомогательных тактов на коленчатом валу устанавливают маховик.

В двигателе внутреннего сгорания газы совершают полезную работу, т. е. определенную мощность.

Мощность — работа, производимая в единицу времени (в 1 с). Мощность, равная 75 кгс • м/с, называется лошадиной силой (л. с.).

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью.

Мощность, снимаемая с коленчатого вала двигателя, называется эффективной мощностью.

Эффективная мощность всегда меньше индикаторной на величину потерь (потери на трение, потери на привод ряда агрегатов, механизмов). Величина этих потерь оценивается механическим коэффициентом полезного действия ( КПД ), представляющим собой отношение эффективной мощности двигателя к индикаторной. Для современных карбюраторных двигателей значение этого коэффициента равно 0,75—0,85.

Перечислить процессы, происходящие и цилиндре работающего ДВС.

Ответ.Процесс, происходящий в цилиндре двигателя за один ход поршня, называется тактом. Совокупность всех процессов, происходящих в цилиндре, т. е. впуск горючей смеси, сжатие ее, расширение газов при сгорании и выпуск продуктов сгорания, называется рабочим циклом.

Если рабочий цикл совершается за четыре хода поршня, т. е. за два оборота коленчатого вала, то двигатель называется четырехтактным.

Впуск — первый такт (рисунок 1 а). Поршень перемещается вниз и, действуя подобно насосу, создает разрежение в цилиндре. Под влиянием разности давлений через открытый впускной кла­пан цилиндр заполняется чистым воздухом. Выпускной клапан закрыт. В конце такта закрывается и впускной клапан. К этому моменту давление в цилиндре составляет 0,08. 0,09 МПа, темпе­ратура — 30. 50°С

Сжатие второй такт (рисунок 1 б). Поршень, продолжая движение, перемещается вверх. Поскольку оба клапана закрыты, поршень сжимает воздух, температура которого растет. Благода­ря высокой степени сжатия давление в цилиндре повышается до 4 МПа, воздух нагревается до температуры 600°С. В конце такта сжатия через форсунку в мелкораспыленном состоянии в ци­линдр впрыскивается порция дизельного топлива. Мелкие части­цы топлива, соприкасаясь с нагретыми сжатым воздухом стенка­ми цилиндра, самовоспламеняются, большая их часть сгорает.

Расширение или рабочий ход — третий такт (рисунок 1 в). Поршень идет вниз. Во время этого такта топливо сгорает полно­стью. Оба клапана при рабочем ходе закрыты. Температура газов при сгорании достигает 2000°С, давление повышается до 8 МПа и более. Под большим давлением расширяющихся газов поршень перемещается вниз и передает воспринимаемое им усилие через шатун на коленчатый вал, заставляя его вращаться. Около ИМТ давление снижается до 0,4 МПа, температура до 700°С.

Читать еще:  Элпром троян мвн 21 характеристики двигателя

Выпуск- четвертый такт (рисунок 3 г). Поршень перемещается вверх, выпускной клапан открывается. Отработавшие газы сначала под действием избыточного давления, затем под действием поршня удаляются из цилиндра. Когда поршень находит­ся около ВМТ, выпускной клапан закрываемся, впускной открывается. Рабочий цикл повторяется.

Далее процессы, происходящие в цилиндре, повторяются в указанной последовательности. Рабочим является только один такт — расширение, впуск и сжатие являются подготовительными, а выпуск — заключительным тактами.

Что называют порядком работы цилиндров?

Ответ. Последовательностьчередования одноименных тактов в ци­линдрах называют порядком работы двигателя. Порядок работы четырехцилиндровых отечественных тракторныхдвигателей 1-3-4-2. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре (рисунок 2). Определенная по­следовательность соблюдаетсяи в других многоцилиндровых двигателях, например в шестицилиндровом V-образном дизеле: 1-4-2-5-3-6

При выборе порядка работы двигателя конструкторы

стре­мятся равномерно распределить нагрузку на коленчатый вал. Зная порядок работы цилиндров двигателя, можно правильно присоединить топливо проводы к форсункам и отрегулировать клапаны.

Рисунок 2: а — схема четырехцилиндрового дизеля;

б — порядок работы четырехцилиндрового дизеля

Температура сгорания бензина в цилиндре двигателя

Для автомобиля рабочая температура двигателя, в зависимости от типа двигателя: бензинового или дизельного она может отличаться. Зная правильные показатели, можно сделать вывод исправно ли работает двигатель, понять не слишком низкая температура или высокая.

В бензиновых вариантах в камере сгорания рабочая температура двигателя может подниматься до 2000 градусов, это считается нормальным: только так топливная смесь будет сгорать оптимально, давая наибольшую мощность. Однако для нормализации температуры каждый автомобиль оснащен системой охлаждения, она нужна для поддержания 90 градусов, иначе все жидкости начнут закипать. Некоторые модели нормально работают при показателях 110 градусов. Обычно это старотипные конструкции, оснащенные только воздушным охлаждением.

Если режим температуры оптимален, цилиндры будут работать лучше, мотор прослужит дольше, при этом будет стабильно запускаться. При нагреве многие элементы могут расширяться, поэтому конструктивно для них предусмотрены специальные тепловые зазоры. При перегреве детали перекрывают допустимые зазоры, трение становится более сильным, некоторые элементы могут перестать двигаться, и тогда мотор заклинит. Менее опасными явлениями являются мелкие поломки, образование зазоров в цилиндрах, из-за чего их мощность падает, наполнение цилиндров происходит плохо. Топливо может начать детонировать в неподходящий момент самостоятельно, что приводит к разрушению конструкции.

Причины повышения показателя температуры

Существует несколько причин, из-за которых температура двигателя повышается:

  • Наиболее распространенной причиной повышения температуры мотора является неисправность клапана термостата. Его может заклинить в закрытом состоянии.
  • Сломан электрический вентилятор, предназначенный для искусственного охлаждения системы. Выйти из строя может сам моторчик, гидромуфта, нередко перегорает предохранитель. Стоит проверить проводку, возможно, где-то произошел обрыв, если все остальное исправно. Отказать может и датчик температуры, в этом случае его требуется заменить.
  • Стоит проверить радиатор: он периодически забивается разнообразным мусором.
  • В крышке расширительного бачка имеются клапана, они могут неправильно работать или забиться.
  • Пробой прокладки блока цилиндра или трещина на его корпусе
  • Кроме этого, помпа может начать протекать и вызывать повышение термальных условий.
  • Дополнительные механизмы могут иметь собственные ремни, при ослаблении натяжки которых возникают разнообразные проблемы.
  • Система охлаждения в исправном состоянии должна быть герметично, но при ее разгерметизации температура мотора может резко повышаться.

Многих интересует, какая рабочая температура двигателя должна быть минимально. В некоторых случаях мотор не перегревается, а, наоборот, не греется до рабочей температуры, это не так опасно, однако в этом случае не стоит ожидать от силового агрегата эффективной работы. Дело в том, что топливо не будет сгорать до конца, тяга станет слабой. Конденсат от топливной смеси попадет сначала на стенки цилиндров, затем в картер. Последнее приводит к разжижению масла и ухудшению его свойств. Из-за этого смазываться и очищаться детали изнутри будут хуже, что приведет к их повышенному износу. Больше всего страдает от этого ЦПГ, распредвал и вкладыши коленвала, могут выйти из строя и балансировочные валы.


Детонация

В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.

Основные причины появления детонации:

  • применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
  • повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
  • увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.

На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.

Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.

Отличия по типу двигателя

Существуют разные модели, температурный режим которых будет отличаться. Например, встречаются обычные моторы и форсированные, второй тип более сильно греется. Процессы горения в них происходят иначе, поэтому клапан термостата срабатывает в разное время. Кроме этого, у разных моделей устанавливаются различные системы охлаждения, работающие с конкретной скоростью и интенсивностью.

От того, как настроен и когда срабатывает датчик температуры, зависит момент включения вентилятора с электроприводом. Обратите внимание на то, что модели авто с инжектором и карбюратором имеют разные настройки, и термостат даже для одной и той же машины, но с разной системой питания требуется свой. Этот прибор напрямую влияет на нагрев двигателя, поэтому выбору в случае замены требуется уделить особенное внимание.

Частые проблемы дизелей: момент впрыска и компрессия

Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.

Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.

При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.

Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему

То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.

Читать еще:  Влияют ли гидрокомпенсаторы на давление масла в двигателе

Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.

Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.

Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т.д.

В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.

Рабочая температура дизельного двигателя

Дизельные агрегаты имеют другую конструкцию, поэтому температура в камере сгорания при их работе в несколько раз ниже. Температура работы зависит от того, какого типа сам двигатель. При работе температура сначала значительно повышается, потом снижается, так как горючая смесь начинает воспламеняться быстрее. Она сгорает раньше, процесс становится более плавным и полноценным, почти не остается невоспламенившейся жидкости. За счет этого рабочая температура становится стабильной, больше делается КПД двигателя, сами выхлопы становятся менее токсичными.

Влияние угла опережения зажигания

Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.

Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.

При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.

Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.

Сгорание рабочей смеси в двигателях с искровым зажиганием

О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.

Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.

Процесс сгорания условно делят на три фазы.

Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.

Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.

Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.

От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.

Продолжительность первой фазы зависит от ряда факторов.

Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.

На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.

Процесс сгорания топлива в двигателе

При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в.м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.

Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.

Температура внутри цилиндра бензинового двигателя

Главное меню

Судовые двигатели

Процесс передачи тепла от газов к охлаждающей жидкости в цилиндре двигателя разбивается на три этапа: теплоотдача от газов к стенке цилиндра; теплопередача через стенки цилиндра и теплоотдача от наружной поверхно­сти стенок цилиндра к охлаждающей среде. Теплоотдача от газов к стенке цилиндра про­исходит главным образом путем соприкосно­вения. Радиационная составляющая теплооб­мена принимается равной около 5% . Однако некоторые исследования последних лет пока­зывают, что лучистый теплообмен в цилиндре дизеля достигает 15% от всего передаваемого тепла. При установившемся тепловом потоке, и если принять стенку цилиндра плоской, сог­ласно закону Ньютона, количество теплоты, переданное от газов к 1 м 2 поверхности стен­ки в течение часа, будет равно

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector