Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Водородный двигатель принцип работы

Водородный двигатель принцип работы

Водородный двигатель: типы, устройство,принцип работы

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде.

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

  • Машины с 2-мя энергоносителями. Они обладают экономичным мотором, способным работать на чистом водороде или бензиновой смеси. КПД двигателя такого типа достигает 90-95 процентов. Для сравнения дизельный мотор имеет коэффициент полезного действия на уровне 50%, а обычный ДВС — 35%. Такие транспортные средства соответствуют стандарту Евро-4.
  • Автомобиль со встроенным электродвигателем, питающим водородный элемент на борту транспортного средства. Сегодня удалось создать моторы, имеющие КПД от 75% и более.
  • Обычные транспортные средства, работающие на чистом водороде или топливно-воздушной смеси. Особенность таких двигателей заключается в чистом выхлопе и увеличении КПД еще на 20%.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения.

Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

  1. Моторы внутреннего сгорания;
  2. Двигатели на водородных элементах.

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от H2O для последующей реакции с O2.

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается H2, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

Водородные топливные элементы

Водородный топливный элемент, с конструктивной точки зрения, является своеобразной аккумуляторной «батарейкой» с высокими показателями коэффициента полезного действия (порядка 50%). Внутри корпуса протекают физико-химических процессы с участием специальной мембраны, отвечающей за проведение протонов. Посредством такого мембранного элемента происходит деление корпуса на пару частей – резервуар с анодом и камеру с катодом.

Камера с анодом заполняется водородом, а в катодную часть поступает атмосферный кислород. В качестве покрытия электродов используются дорогостоящие редкоземельные металлы, включая платину. Особенности поверхности обеспечивают взаимодействие с водородными молекулами, в результате чего происходит потеря электронов. Одномоментно с этим процессом выполняется прохождение протонов сквозь мембрану к катоду. Благодаря такому воздействию катализатора протоны соединяются с поступившими извне электронами.

Результат произошедшей реакции – образование воды и поступление электронов из анодной камеры в электрическую цепь, подключённую к силовому агрегату. Таким образом, двигатель приводится в движение водородным топливным элементом и может проработать порядка 200-250 км. Тормозит применение такой технологии и серийный выпуск автомобилей с водородными двигателями необходимость использовать в конструкции элементов платину, палладий и другие дорогостоящие металлы.

Принцип работы

Устройство водородных двигателей не отличается особой сложностью. Главным отличием является способ подачи и воспламенения смесей при полном сохранении основного принципа преобразования. При этом на фоне традиционного бензина и дизеля, водородное топливо обеспечивает мгновенную скорость реакции даже в условиях незначительного уровня давления внутри топливной системы. Для образования смеси участие воздуха не является необходимым, а остающийся в камере сгорания пар, после прохождения сквозь радиатор и конденсации, снова становится Н2О.

Читать еще:  Двигатели с частотным управлением принцип работы

Безусловно, топливный элемент в данном варианте предполагает использование специального электролизера, обеспечивающего выделение достаточного количества водорода для участия в возобновлённом гидролизе с кислородом. Основная проблема состоит в том, что в современных реалиях данный вариант практически невыполним. Современные технологии не гарантируют стабильность функционирования и беспроблемный запуск мотора при отсутствии атмосферного воздуха.

Особенности гибридных конструкций

Характеристики, которыми обладает водородное топливо, активно использовались многими конструкторами с целью создания уникального гидродвигателя внутреннего сгорания. Например, разработанный В.С. Кащеевым метод – это принципиально иная установка, имеющая не только традиционный подающий воздух впускной клапан и выпускное устройство отвода выхлопных газов, но и отдельный клапанный механизм подачи водорода, а также свечу зажигания в головке блоков цилиндров.

Несмотря на некоторые принципиальные отличия, механизм работы остаётся неизменным, поэтому любые гибридные силовые агрегаты принято считать переходной стадией от применения дизеля и бензина к использованию водородного топлива. Благодаря высоким показателям КПД, лёгкое химическое вещество вводится в состав топливно-воздушных смесей, что значительно повышает степень сжатия, а также снижает токсичность выхлопов. Кроме этого, взаимодействие кислорода с водородом сопровождается выделением достаточного количества энергии, которая нужна автомобильным электродвигателям.

Водород как горючее

Первым делом хочется понять, что собой представляет двигатель на водороде. А для этого нам необходимо изучить сам водород как эффективный источник энергии, то есть альтернатива привычному нам топливу.

Каждый прекрасно знает, что в обычном двигателе с системой внутреннего сгорания, который работает на бензине, происходит смешивание топлива с воздухом. Затем эта смесь поступает внутрь цилиндров, где и сгорает. Это создаёт энергию для перемещения поршней, что и способствует в итоге движению ТС.

У водорода есть свои нюансы, которые проявляются в следующем:

  • когда сжигается смесь с использованием водорода, на выходе получается только обычный водяной пар;
  • на воспламенение водорода уходит меньше времени, чем в случае с дизельным или традиционным бензиновым топливом;
  • детонационная устойчивость вещества способствует увеличению степени сжатия;
  • показатели теплоотдачи состава превосходят топливовоздушную смесь на 250%;
  • водород является летучим газом, из-за чего он может проникать в малейшие полости и зазоры;
  • лишь некоторые металлы способны справиться с воздействием воспламеняющегося водорода;
  • такое топливо можно хранить в жидком или сжатом агрегатном состоянии;
  • если ёмкость получает пробой или небольшую трещину, всё топливо испаряется довольно быстро;
  • чтобы вступить в реакцию с кислородом, нижний уровень газа составляет 4%;
  • последняя особенность позволяет настраивать необходимые оптимальные режимы для двигателя за счёт дозировки консистенции.

Если принимать во внимание все рассмотренные особенности, можно с уверенностью сказать, что вариант с использованием чистого водорода в обычном ДВС невозможен. Чтобы добиться желаемого, необходимо обязательно внести некоторые изменения в конструкцию, а также установить дополнительное оборудование.

В чём опасность такого топлива

Водород позиционируется как взрывоопасное вещество. Именно это можно справедливо считать главной опасностью и проблемой всей технологии водородных моторов.

Сочетаясь с окислителем, в качестве которого выступает кислород, увеличивается риск воспламенения, и также возникает угроза взрывов. Исследования показатели, что на воспламенение водорода уходит около десятой доли энергии, требуемой при воспламенении топливовоздушной смеси. Фактически можно обойтись небольшой статической искрой, дабы водород вспыхнул.

Есть ещё одна опасность. Газ невидимый, и даже в процессе горения его практически незаметно. Невидимость огня усложняет возможность бороться с ним.

Нельзя забывать об опасности вещества для самого человека. Находясь в зоне с повышенной концентрацией газа в воздухе, может наступить удушье. А распознать наличие вещества крайне проблематично. Объясняется это отсутствием запаха и цвета. То есть человеческий газ не способен его разглядеть, а нос не может разнюхать.

В качестве последнего аргумента в пользу того, что водород действительно опасен, выступает факт его очень низкой температуры в случае нахождения в сжиженном состоянии. Контакт с таким веществом способен спровоцировать обморожение.

Хуже тротила: какими бедами грозит миру водородная энергетика

Андрей Злобин, кандидат технических наук, математик

Несмотря на все предупреждения об опасности перехода на водородную энергетику, этот сомнительный замысел лоббируется с упрямством, достойным лучшего применения. Как правило, лоббированием занимаются люди, не имеющие специального образования и плохо представляющие себе массу проблем, связанных с широким использованием водорода в качестве топлива. Между тем, даже школьникам известно, что водород в смеси с кислородом представляет собой не что иное, как «гремучий газ». Само название этого газа говорит за себя. Водород плюс кислород — это самая настоящая взрывчатка, которая способна детонировать не хуже тротила.

Есть сомнения? Тогда вспомните наглядный пример из сферы энергетики — трагедию Фукусимы. Катастрофа на атомной электростанции АЭС Фукусима-1 в марте 2011 года является следствием взрыва водорода. Некоторые горячие головы уже готовы всерьез переводить на водородное топливо гражданскую авиацию. Им стоит посмотреть видеозапись катастрофы американского Шаттла «Челленджер» с астронавтами на борту. Это и есть взрыв смеси водорода и кислорода, который в клочья разметал то, что называлось «многоразовым» летательным аппаратом и гордостью американской космической программы. Все астронавты погибли.

У водорода есть еще один крупный недостаток, который представляет собой фактор серьезной опасности. Вот что об этом говорится в «Прогнозе развития энергетики мира и России до 2040 года», подготовленном Институтом энергетических исследований Российской Академии наук и аналитическим центром при Правительстве РФ. «Главная проблема современных водородных автомобилей – их высокая пожаро- и взрывоопасность (молекулы водорода способны проникать в структуру металла кузова или бака, просачиваясь из автомобиля наружу, что может привести к детонации)».

И хотя пример приводится из области автомобилестроения, то же самое можно сказать об энергетике, авиации любой другой технике, использующей водород в качестве топлива. Даже сталь является для водорода дырявым решетом, и только ее специальные марки или значительное увеличение толщины металла немного снижают остроту проблемы. Эти лишние металлические тонны делают «игрушки на водороде» крайне опасными и дорогими.

Какие еще нужно привести аргументы, чтобы понять — лоббирование водорода на замену нефти и газу откровенно смахивает на авантюризм. Ну нельзя, образно говоря, отапливать жилища тротилом, ездить, летать или плавать верхом на взрывчатке. Все это очень плохо кончится. Сколько еще Фукусим и Челенджеров должно рвануть, чтобы пришло понимание преждевременности водородной эры? Где гарантии, что нашпиговав страну «водородными минами» мы однажды не получим что-то пострашнее Чернобыля?

Я считаю, что игру в водородную рулетку нужно немедленно прекратить. Научные исследования по линии водорода продолжать можно и нужно. А всерьез рассчитывать на водородную энергетику или транспорт в ближайшие несколько десятилетий — это авантюра. И не надо дуть в уши про «потепление климата». От водорода может «потеплеть» так, что мало не покажется. Думаю, следует величать карбонариями тех, кто излишне ретиво печется о декарбонизации. Пусть начинают декарбонизацию с себя. Россия, полагаю, слушать карбонариев не обязана. Глубоко сомневаюсь, что «тротиловая энергетика» является дорогой к процветанию.

Водородное топливо – альтернатива или тупиковое направление?

Экологи и ученые уже давно бьются над решением проблемы создания максимально экологичного и чистого вида топлива. Причем оно должно быть не только дешевым, но и неисчерпаемым, поскольку призвано заменить привычные для нас энергоресурсы. Его цена не должна превышать стоимости угля, нефти и природного газа. Задача кажется невыполнимой, однако все чаще взоры энергетиков обращаются на водород как вид топлива, способный удовлетворить имеющимся требованиям и стать широкоиспользуемым ресурсом.

Ко всему прочему ситуация в мире становится нестабильна и каждое государство хочет снизить зависимость от того или иного топлива, добыча которого производится на территории других стран. Все чаще водород рассматривается как возможность использования его в качестве альтернативного варианта. У него есть определенные плюсы, но есть и минусы. Попробуем разобраться в аспектах использования водорода, как топлива, его преимуществах и недостатках. А также постараемся ответить на вопрос: быть ли ему полноценной заменой существующих видов топлива.

Читать еще:  Что нужно чтобы поставить инжекторный двигатель на ваз 2106

Сам по себе водород является побочным продуктом энергетического процесса и по идее должен уничтожаться, поскольку его скопление очень опасно. Но энергетики решили найти ему практическое применение.

Водород в качестве альтернативного топлива

Транспортные средства достаточно активно используют природные источники энергии, потребляя около трети всей нефти, добываемой в мире, и из всех видов транспорта автомобили являются наиболее энергоемкими. Использование углеводородного топлива на нефтяной основе сопровождается выбросом в атмосферу большого количества вредных веществ. Это приводит к глобальному загрязнению окружающей среды. В качестве альтернативы предлагается начать активно использовать гидроген и на его основе устанавливать в машины топливные элементы. Давайте сначала поймем, почему выбор пал на этот изотоп.

Водород (H2) — один из немногих газов, широко распространенный на планете, обладающий высокой теплотвотворной способностью. Это абсолютно бесцветный газ, без вкуса и без запаха, из-за чего экологи ратуют за его применение в качестве топлива. Можно отметить, что он очень перспективный энергоноситель. Промышленный процесс его получения таков, что когда вещество соединяется с кислородом, образуется вода и выделяется определенное количество тепла. Это сгорание не вызывает вредных выбросов в окружающую среду, в частности двуокиси углерода. При горении с доступом кислорода снова образуется вода, которую можно использовать повторно. Это делает источник энергии самообновляемым, а отсутствие вредных веществ – экологически чистым и безвредным для окружающей среды.

Идея создания углеводородного электродвигателя пришла с запада, а точнее из Америки. Интерес к газу как альтернативному питанию для транспорта обусловлен, прежде всего:

  • возможностью использования топливных элементов в FCEV (fuel cell vehicle) в электромобилях топливного типа без выбросов;
  • быстрой заправкой автомашин, занимающей от 3 до 5 минут;
  • эффективностью ТЭ с точки зрения расхода и стоимости;
  • возможностью получения его из углеводородов, биомассы и мусора;
  • потенциалом для отечественного производства.

Принцип действия ТЭ основан на прокачивании кислорода и водорода через катоды и аноды, контактирующими с платиновым катализатором. В результате происходит химическая реакция, в которой образуется вода и электрический ток. Топливный элемент, подсоединенный к электродвигателю, в два-три раза быстрее и экономичнее, чем бензиновый мотор внутреннего сгорания.

Следует отметить, что большинство развитых стран охотно переходят на водородный изотоп и начали строить АЗС на его основе. Заправки появились в Японии, США и Германии. Также крупные автомобильные концерны готовы предложить новые разработки автомобилей с водородными ТЭ. Немалый интерес к этому типу горючего проявляют авиаконструкторы и уже фирмой “Боинг” был разработан самолет “Джамбо Джет” на основе водорода. А перекись водорода, являющаяся соединением водорода, применяется в электромоторах ракет и подводных лодок. Более подробную информацию о топливе можно прочитать в статье “Почему биотопливо считается перспективным направлением?”

Плюсы и минусы

У вида горючего есть сторонники, которые уверены, что за водородом будущее. Но есть и скептики, которые находят больше минусов, чем плюсов. Взвесим все “за” и “против”.

Плюсы водородного топлива.

  • Наверное, самым главным плюсом является его экологичность. При эксплуатации других марок топлива образуются вредные выхлопы, загрязняющие воздух. У углеводорода с ними проблем нет. Все, что остается после внутреннего сгорания – это водяной пар. Безусловно, при расходовании сгорают разные масла, но их токсичный выброс в разы меньше по сравнению с бензиновым.
  • Простота конструкции и ее использование. Для мотора не требуется сложных систем подачи горючего, которые пока есть в современных авто и которые не отличаются надежностью, а порой бывают даже опасны. У электродвигателей с искровым зажиганием, которые работают на водородном изотопе, имеется возможность качественно регулировать топливоздушную смесь. Этот газ также способен сделать маленькие двигатели достаточно мощными, а авто высокоскоростными.
  • Водородное топливо делает движение автомобиля полностью бесшумным.
  • Нельзя не игнорировать тот факт, что КПД электродвигателя, работающего на углеводороде, намного выше, чем у бензинового двигателя внутреннего сгорания.
  • И еще одно “за”. Этот элемент самый распространенный во Вселенной занимающий более 86% атомов, и в отличие от запасов нефти, он никогда не закончится и на нем не придется экономить.

Что же говорят скептики, отрицая возможность его применения?

  • На сегодняшний день способ получения в промышленных объемах достаточно дорогой и сложный. Сам по себе в чистом виде изотоп не существует, он летуч и для его добычи необходимы определенные технологии, которые требуют денежных вложений и определенных затрат.
  • Сложности при хранении и транспортировке газа. До сих пор не разработаны стандарты хранения и перевозки, так как никаких значимых экспериментов не проводилось. Это вновь потребует денежных инвестиций.
  • Несмотря на более простую систему углеводородного двигателя относительного бензинового, она пока не совершенна. Под ее установку требуются автомобили больших габаритов, что делает выпуск транспортных средств более дорогим. Безусловно, эту проблему можно решить, если проводить дополнительные разработки и эксперименты, но пока ими мало кто занимается.
  • Сложности перевода производства на добычу и переработку гидрогена. Дело в том, что для его добычи требуются совершенно другие машины и механизмы, отличные от тех, которые используются для добычи нефти. Не все предприятия готовы потратить деньги на модернизацию своего производства и переход на новейшие стандарты. К тому же из-за малоизученности элемента промышленные гиганты не готовы рисковать, не зная, как отреагируют потребители.
  • Недоверие покупателей. Еще один фактор, сдерживающий полное внедрение газа. Пока еще общество скептически относится к новшеству, предпочитая проверенные средства заправки. Из-за этого в мире небольшой процент АЗС, полностью готовых обеспечивать этим видом горючего.

Как видим, пока обоснованных минусов больше. Отсутствие стандартов добычи, переработки, хранения водородного изотопа, а также приемлемых конструкторских решений ведет к недоверию общества, которое пока не готово пересаживаться на новые водородные авто, а промышленность не видит целесообразности проводить реконструкцию производства из-за низкого спроса.

Как работает топливный элемент?

В статье уже упоминалось о топливном элементе, который планируется устанавливать в автомобилях нового типа. Давайте подробнее познакомимся с его принципом действия.

Топливный элемент – электрохимическое устройство, которое преобразует энергию, хранящуюся в химической формуле, в электроэнергию, воду и тепло. Он состоит из двух электродов: анода и катода. Для их изготовления используют угольные пластины, покрытые платиной. На аноде подающийся гидроген распадается, при потере электрона. В это время кислород на катоде соединяется с пришедшим патроном. По большому счету топливный элемент можно сравнить с батареей, у которой вырабатывается постоянный ток в результате химической реакции. Разница между ТЭ и батареей заключается в том, что он не накапливает электричество, не разряжается и его не нужно повторно заряжать. Он будет работать до тех пор, пока имеется запас топлива и воздуха. Отличительной особенностью еще можно назвать то, что элементы не сжигают топливо, как другие электрогнераторы.

Еще к плюсам углеводородных двигателей можно отнести их способность работать при низких температурах, что сокращает время запуска. Это происходит благодаря графитовым ячейкам, которые дают возможность проходить реагентам с сохранением электрического контакта с электролитом. Благодаря этому в холода не придется прогревать двигатель.

Читать еще:  Шкода октавия не заводится двигатель аее

Правда у таких элементов имеется одна особенность. Низкая плотность изотопа несет с собой трудности проектирования системы для его хранения в машине. Для хранения придется использовать бак, превышающий обычный в 800 раз. Но сегодня разработаны основные решения для его хранения:

  • в сжатом виде, когда он находится в баллонах;
  • на криогенных станциях, где газ хранится при низкой температуре;
  • в виде сплавов (металл и гидрид), поглощающих водород.

Пока заправка авто с водородным двигателем весьма дорогой процесс, требующий гибкой связи между заправщиком и автомобилем, который обеспечивает запечатанную систему.

Массовые авто на водороде: быть или не быть?

Однозначно ответить на этот вопрос пока нельзя. Конечно, попытки создать или получить усовершенствованное экологически чистое и дешевое горючее не будут остановлены. Возможно, разработки будут вестись в совершенно другом направлении и гидроген не станет единственным альтернативным вариантом. Пока же некоторые дилерские центры готовы предложить автомобили на водородном изотопе. Так, уже есть марки Toyota, Honda, Mercedes-Benz, Hyundai, но их стоимость достаточно высока. Проходят испытания Ford, Nissan, Daimler и Volkswagen. Большой энтузиазм по внедрению проявляют азиатские страны, в частности Япония, Китай и Южная Корея. В этих странах наибольшие показатели ВЗС (водородно заправочных станций). Правительства этих стран проводят активную политику по внедрению легковых автомобилей и общественного транспорта на водородных частицах, а также расширяют сети для промышленного производства горючего.

Европейские страны, хотя и не в отстающих, но все же не спешат переводить автопром на водород. Связано это с минусами, которые были рассмотрены выше. К тому же государствам придется серьезно раскошелиться, чтобы содержать водородные станции. Водородным заправочным станциям непросто заменить разветвленную сеть обычных АЗС и по сегодняшним подсчетам она может обойтись более полутора триллионов долларов США. Еще одним сложным аспектом является получение самого изотопа. Сегодня используют:

  • паровую конверсию метана и природного газа;
  • электролиз воды и газификацию угля;
  • пиролиз и частичное окисление;
  • биотехнологии.

В качестве последних серьезно рассматривают возможность получать газ из солнечной энергии, энергии ветра, из биомассы (с помощью бактерий) и отходов (путем их сжигания). Пока все методы имеют свои несовершенства, над которыми ученым и энергетикам еще предстоит поработать.

Подводя итоги, надо сказать, что успех внедрения углеводородного топлива и его использования во многом будет зависеть от сотрудничества стран и государств в этой области. Пока что уровень не очень высок. Не проводятся массовые испытания, не разрабатываются необходимые стандарты и не проводятся информационно-рекламные мероприятия призванные повысить интерес населения к новому горючему. Процесс перехода будет осуществляться постепенно и возможно займет не одно десятилетие. Однако в перспективе водород как вид топлива может быть очень востребован и для этого имеются все предпосылки.

Водородный двигатель. достоинства и недостатки.

Автокомпании ломают голову, какие двигатели будут пользоваться популярностью в будущем. Некоторые разрабатывают электрические, а некоторые водородные.

Вот водородный двигатель рассмотрим.

Когда запасов нефти уменьшаться, людям придется использовать альтернативные виды топлива. И водородный двигатель вполне может заменить ДВС.

Силовые установки такого типа двигателей имеют больший КПД и меньшую степень токсичности выхлопных газов. Главное преимущество двигателей на водороде, это неограниченный запас сырья для топлива. Основой топлива может стать вода. Интерес к водороду появился еще 70-х годах, а 1-ый водородный мотор изобрели только в 21 веке.

Водород использовали во время блокады Ленинграда, им заправляли лебедки аэростатов. Конечно, преимущества очевидны, при этом существует много «но».

ОСОБЕННОСТИ ВОДОРОДА, КАК ТОПЛИВА ДЛЯ ДВС

1) После сгорания остается водяной пар;

2) Реакция происходит быстрей, чем с бензином или дизелем;

3) Детонационная устойчивость повышает степень сжатия;

3) Благодаря своей летучести, водород проникает в самые малые полости, зазоры между деталями;

4) Теплоотдача сгорания водорода в 2,5 раза больше, чем у бензиновой смеси (нужны стойкие материалы);

5) Широкий диапазон реакции. Минимальная пропорция водорода, достаточная для реакции с кислородом, составляет всего 4%. Она позволяет настраивать режимы работы двигателя, дозируя консистенцию смеси;

6) Хранение водорода в основном в сжатом или жидком состоянии. При пробое бака, газ под давлением испаряется.

Из-за этих особенностей, использования водорода, как топлива требует внедрение изменений в конструкции ДВС и навесного оборудования.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде, заключается в способе подачи и воспламенении водородной смеси.

Принцип преобразования возвратно-поступательных движений КШМ в КПД неизменно. Так как горение нефтяного топлива происходит медленно, камера сгорания наполняется топливно-воздушной смесью раньше момента поднятия поршня в свое крайнее верхнее положение.

Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе может быть высоким.

В идеале водородный мотор может иметь систему питания закрытого типа. Смесеобразование происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, он проходит через радиатор, конденсируется становится водой.

Но это возможно если на автомашине стоит электролизер, он отделяет с полученной воды водород для повторной реакции с кислородом. На практике это осуществить сложно.

Для уменьшения силы трения в двигателе используют масло. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Недостатк исподбзования водородных двигателей

Главный недостаток – это стоимость получения водорода, комплектующих для хранения и транспортировка.

Для сохранения сжиженного состояния требуется поддержка постоянной температуры -253º С. Доступный способ получения Н2 – электролиз воды. Промышленное снабжение водородом требует больших энергетических затрат. Рентабельным его может сделать ядерная энергетика, и пока ей пробуют найти замену. Транспортировка и хранение требуют дорогостоящих материалов и высококачественных механизмов. Помимо электрохимического генератора еще нужен легкий и прочный бак.

Другие недостатки водородного топлива:

— Взрывоопасность.

В замкнутом пространстве достаточная концентрация газа может взорваться. Это может спровоцировать даже высокая температура. Из-за высокой степени диффузности водорода возможно попадания Н2 в выхлопной коллектор, то есть реакция с горячими выхлопными газами спровоцирует возгорание. Роторный двигатель предпочтительнее для водородного автомобиля;

для хранения водорода нужна большая емкость, специальные системы они должны препятствовать улетучиванию Н2 и защищать от механических деформаций.

Для автобусов, грузовиков и водного транспорта эта особенность не имеет значения, но легковые автомобили теряют ценные кубометры багажного отделения;

при высокотемпературных нагрузках водород может провоцировать разрушение деталей цилиндропоршневой группы.

Требуется применение специальных сплавов и смазочных материалов, а из-за этого ведет к удорожанию производства и эксплуатации водородных двигателей.

Технология гибридных двигателей – это промежуточная составная часть между началом введения водорода в качестве топлива до отказа от нефтепродуктов. Автомашины гибриды смогут двигаться и на бензине, и на водороде.

Автомобилестроение – это не единственная область, где применяют водородные моторы. Водный транспорт, железнодорожный транспорт, авиация и др.

Интерес у многих предприятий, такие как: BMW, Volskwagen, Toyota, GM, Daimler AG и др. Сейчас можно увидеть и опытные образцы, и рабочие модели.

BMW 750i Hydrogen, Honda FSX, Toyota Mirai и другие модели.

Но, высокая стоимость водорода и отсутствие заправочных станций, да и недостаток специализированных сотрудников, оборудования для ремонта и обслуживания не дает ввести массовое производство. Оптимизация цикла использования гремучего газа стала первоначальной задачей в развитии водородного мотора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector