Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вольт амперная характеристика двигателя постоянного тока

Вольт амперная характеристика двигателя постоянного тока

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА р-n ПЕРЕХОДА

В общем виде вольт-амперная характеристика (ВАХ) р-n перехода (рис. 1.10) представляется экспоненциальной зависимостью

(1.11)

где I — обратный ток. Этот ток имеет небольшие величины (мкА или нА), но довольно сильно увеличивается при повыше­нии температуры. Подробно I рассмотрим далее.

Из (1.11) следует, что при прямом смещении (U > 0) ток через р-п переход возрастает, а при обратном смещении (U 0,1В, в формуле (1.11) можно пренебречь единицей по сравнению с экспонентой. Таким образом, р-п переход характеризуется свойством односторонней электропроводности, т. е. хорошо проводит ток в прямом на­правлении и плохо в обратном. Следовательно, р-п переход обладает выпрямляющим действием, что позволяет использовать его в качестве выпрямителя переменного тока.

Важным параметром р-п перехода является его дифференциальное сопротивление rд. Формулу для определения rд прямой ветви ВАХ получим из (1.11):

(1.12)

C ростом тока дифференциальное сопротивление р-п перехода быстро падает. При токах порядка единиц и десятков миллиампер rД состав­ляет десятки и единицы Oм.

При расчете выпрямительных устройств часто пользуются другим параметром р-п перехода — сопротивлением постоянному току Rст.

Из формулы (1.11) довольно просто получить зависимость Rст от рабочего тока:

При прямом смещении р-п перехода (при протекании прямого тока) Rст всегда больше сопротивления rд.

Поскольку на р-п переходе при больших токах может выделяться достаточно большая мощность, температура перехода при этом может заметно превысить температуру отдельных областей полупроводникового элемента и окружающей среды.

Тепловой баланс в полупроводниковой структуре устанавливается через некоторое время после включения тока и определяется теплопроводностью отдельных частей структуры. С целью повышения максимально допустимой мощности, выделяемой на р-п переходе, прежде всего следует улучшить теплообмен с окружающей средой. Более подробно вопрос теплового режима будет рассмотрен в гл. 3.

При прямом смещении р-п перехода его идеализированная ВАХ согласно (1.11) представляется однородной экспонентой. Однако реальная характеристика имеет несколько более сложную форму: состоит из нескольких участков с разными на­клонами. Отличия реальной ВАХ от идеализированной опреде­ляются несколькими причинами.

Первая причина обусловлена процессами рекомбинации в i-области р-п перехода. Она имеет место при малых прямых смещениях. В этом случае ∆φ еще велика, следовательно, имеет место малый уровень инжекции, т. е. в i-область из эмиттера и базы попадает малое число носителей заряда. При таком малом положительном смещении ширина перехода l еще довольно большая — объем i-области еще достаточно велик, следователь­но, в ней присутствует относительно много ловушек. Таким об­разом, за счет большого числа ловушек создаются очень благо­приятные условия в i-области для рекомбинации малого числа инжектированных носителей.

В рассмотренном случае ВАХ формируется за счет тока ре­комбинации, который тоже имеет экспоненциальную зависи­мость от напряжения, но более пологую, чем по (1.11). За счет такого пологого начального участка вид прямой ветви реальной ВАХ становится таким, как показано на рис. 1.11. На этом ри­сунке представлен параметр UП, называемый напряжением «пятки». Хотя на сегодняшний день и нет четкого определения для этого параметра, он часто используется для прикидочных расчетов радиоэлектронных устройств. Будем несколько услов­но считать, что UП — это напряжение на р-п переходе, при ко­тором I = 0,1 мА. Нетрудно заметить, что чем больше ∆φ и l (чем шире ε3), тем должно быть больше и UП. Следовательно, у кремниевых р-п переходов UП больше, чем у германиевых, и меньше, чем у переходов из арсенида галлия (рис. 1.11). Следует отметить, что в формирование величины UП определенный вклад вносит и ток I.

Другая причина отличия реальной ВАХ от формы (1.11) об­условлена падением напряжения на объемном сопротивлении базы. Эта причина проявляется при достаточно больших токах. Заметим, что сопротивление базы rб в реальных р-п переходах обычно составляет единицы или десятки Ом. Падение напряже­ния на этом сопротивлении Irб является той поправкой, которую следует ввести в формулу (1.11), чтобы учесть различие между напряжением на самом запорном слое р-п перехода и величиной внешнего напряжения U. С учетом такой поправки получаем

(1.13)

Падение напряжения на rб приводит к появлению на ВАХ участка, называемого омическим. При больших токах значение ∆φ становится небольшим, сопротивление обедненного слоя уменьшается и уже оказывается малосущественным, следовательно, в таком случае можно рассматривать р-п переход как простую двухслойную пластину, сопротивление которой приближенно равно сопротивлению ее высокоомного слоя rб э«ρб). Необходимо отметить, что учитывать падение напряжения на rб необходимо для значительного, иногда даже основного, рабоче­го участка ВАХ р-п перехода.

Еще одна причина отличия реальной ВАХ от идеализирован­ной обусловлена модуляцией сопротивления базы при больших уровнях инжекции. Протекание больших токов определяется инжекцией большого числа носителей заряда из эмиттера в базу. В результате присутствия в базе большого числа неосновных носителей заряда ее объемное сопротивление уменьшится. Это обстоятельство делает необходимым учет влияния rб = f(I) в формуле (1.13) для больших уровней инжекции.

Читать еще:  Что означает крутящий момент для двигателя

Обратная ветвь ВАХ р-п перехода определяется обратным то­ком, который, как отмечалось выше, обычно довольно сильно возрастает при повышении температуры. Не останавливаясь здесь на анализе обратной ветви, рассмотрим влияние темпера­туры на прямую ветвь ВАХ р-п перехода. Температурная зависимость прямой ветви ВАХ согласно (1.11) определяется измене­ниями I и φт . Заметим, что при больших токах необходимо со­гласно (1.13) также учитывать изменение rб. Влияние этих температурно-зависимых параметров на ВАХ приводит к тому, что при малых прямых напряжениях ток возрастает с повышением температуры, а при больших — уменьшается. В принципе су­ществует даже точка (область), где величина тока практически не зависит от температуры. Однако эта термостабильная точка редко используется на практике, поскольку имеет место при до­статочно больших уровнях инжекции. Для большинства же ре­альных устройств ток в р-п переходе несколько возрастает с по­вышением температуры (при постоянном напряжении).

На практике чаще всего принято оценивать влияние темпера­туры на ВАХ р-п перехода, определяя изменение напряжения при постоянном токе. Для оценки изменения прямого напряже­ния при изменении температуры вводится температурный коэф­фициент напряжения (ТКН), характеризующий сдвиг ВАХ по оси напряжений. Обычно ТКН имеет отрицательный знак, что знаменует собой уменьшение напряжения на р-п переходе при постоянном токе с ростом температуры. Отметим, что ТКН зависит от тока и несколько уменьшается с его ростом. Для р-п переходов из кремния ТКН достигает — 3 мВ/град.

Вольт-амперная характеристика — Current–voltage characteristic

Вольтамперная характеристика или I-V кривой (кривой вольты-амперный) представляет собой отношения, как правило , представлена в виде диаграммы или графика, между электрическим током через цепь, устройство или материал, а соответствующее напряжение или разность потенциалов поперек Это.

СОДЕРЖАНИЕ

  • 1 В электронике
    • 1.1 Типы ВАХ
  • 2 В электрофизиологии
  • 3 См. Также
  • 4 ссылки

В электронике

В электронике соотношение между постоянным током ( DC ) через электронное устройство и напряжением постоянного тока на его выводах называется вольт-амперной характеристикой устройства. Инженеры-электронщики используют эти диаграммы для определения основных параметров устройства и моделирования его поведения в электрической цепи . Эти характеристики также известны как ВАХ, обозначающие стандартные символы для тока и напряжения.

В электронных компонентах с более чем двумя выводами, таких как электронные лампы и транзисторы , соотношение тока и напряжения на одной паре выводов может зависеть от тока или напряжения на третьем выводе. Обычно это отображается на более сложном графике «ток – напряжение» с несколькими кривыми, каждая из которых представляет собой соотношение «ток-напряжение» при различных значениях тока или напряжения на третьем выводе.

Например, на диаграмме справа показано семейство ВАХ для полевого МОП-транзистора в зависимости от напряжения стока с перенапряжением ( V GS — V th ) в качестве параметра.

Простейшая ВАХ — это кривая резистора , который согласно закону Ома показывает линейную зависимость между приложенным напряжением и результирующим электрическим током ; ток пропорционален напряжению, поэтому ВАХ представляет собой прямую линию, проходящую через начало координат с положительным наклоном . Обратный наклон равно сопротивлению .

Кривая ВАХ электрического компонента может быть измерена с помощью прибора, называемого измерителем кривой . Крутизна и раннее напряжение из транзистора приведены примеры параметров , традиционно измеряются от I-V кривого устройства.

Типы ВАХ

Форма характеристической кривой электрического компонента многое говорит о его рабочих свойствах. ВАХ различных устройств можно сгруппировать по категориям:

  • Активный против пассивного : устройства, у которых есть ВАХ, ограниченные первым и третьим квадрантами ВАХ, проходящей через начало координат , являются пассивными компонентами (нагрузками), потребляющими электроэнергию из цепи. Примеры — резисторы и электродвигатели . Обычный ток всегда течет через эти устройства в направлении электрического поля , от положительного вывода напряжения к отрицательному, поэтому заряды теряют потенциальную энергию в устройстве, которая преобразуется в тепло или другую форму энергии.

Напротив, устройства с ВАХ, которые проходят через второй или четвертый квадрант, являются активными компонентами , источниками энергии , которые могут вырабатывать электроэнергию. Примеры — батареи и генераторы . Когда он работает во втором или четвертом квадранте, ток вынужден течь через устройство от отрицательного к положительному выводу напряжения против противодействующей силы электрического поля, поэтому электрические заряды приобретают потенциальную энергию . Таким образом, устройство преобразует другую форму энергии в электрическую.

  • Линейный или нелинейный : прямая линия, проходящая через начало координат, представляет собой линейный элемент схемы , а изогнутая линия представляет собой нелинейный элемент. Например, резисторы, конденсаторы и катушки индуктивности являются линейными, а диоды и транзисторы — нелинейными. Кривая ВАХ, которая представляет собой прямую линию через начало координат с положительным наклоном, представляет собой линейный или омический резистор, наиболее распространенный тип сопротивления, встречающийся в схемах. Он подчиняется закону Ома ; ток пропорционален приложенному напряжению в широком диапазоне. Его сопротивление , равное обратной величиненаклона линии, постоянно. Изогнутая линия ВАХ представляет нелинейное сопротивление, например диод. В этом типе сопротивление зависит от приложенного напряжения или тока.
  • Отрицательное сопротивление по сравнению с положительным сопротивлением : кривая ВАХ, которая не является монотонной (имеет пики и впадины), представляет устройство с отрицательным сопротивлением . Области кривой с отрицательным наклоном (спускающийся вправо) представляют рабочие области, в которых устройство имеет отрицательное дифференциальное сопротивление , а области положительного наклона представляют собой положительное дифференциальное сопротивление. Устройства с отрицательным сопротивлением могут использоваться для изготовления усилителей и генераторов . Туннельные диоды и диодыГанна являются примерами компонентов с отрицательным сопротивлением.
  • Гистерезис против однозначного : устройства с гистерезисом ; то есть, в котором отношение тока к напряжению зависит не только от текущего приложенного входа, но также и от прошлой истории входов, имеют ВАХ, состоящие из семейств замкнутых контуров. Каждая ветвь петли отмечена стрелкой. Примеры устройств с гистерезисом включают индукторы и трансформаторы с железным сердечником , тиристоры, такие как SCR и DIAC , и газоразрядные трубки, такие как неоновые лампы .
  • ВАХ аналогична характеристической кривой туннельного диода . Он имеет отрицательное сопротивление в заштрихованной области напряжения между v 1 и v 2.

    ВАХ DIAC . V BOнапряжение переключения .

    I – V-кривая мемристора , демонстрирующая сжатый гистерезис

    ВАХ диода Ганна , показывающая отрицательное дифференциальное сопротивление с гистерезисом (обратите внимание на стрелки)

    В электрофизиологии

    Хотя ВАХ применимы к любой электрической системе, они находят широкое применение в области биологического электричества, особенно в подобласти электрофизиологии . В этом случае напряжение относится к напряжению на биологической мембране, мембранному потенциалу , а ток — это поток заряженных ионов через каналы в этой мембране. Ток определяется проводимостью этих каналов.

    В случае ионного тока через биологические мембраны токи измеряются изнутри наружу. То есть положительные токи, известные как «внешний ток», соответствуют положительно заряженным ионам, пересекающим клеточную мембрану изнутри наружу, или отрицательно заряженным ионам, пересекающим снаружи внутрь. Точно так же токи с отрицательным значением называются «внутренним током», что соответствует положительно заряженным ионам, пересекающим клеточную мембрану снаружи внутрь, или отрицательно заряженным ионам, пересекающим изнутри наружу.

    На рисунке справа показана ВАХ, которая больше соответствует токам в возбудимых биологических мембранах (таких как аксон нейрона ). Синяя линия показывает зависимость ВАХ для иона калия. Обратите внимание, что он линейный, что указывает на отсутствие зависящего от напряжения стробирования ионного канала калия. Желтая линия показывает зависимость I – V для иона натрия. Обратите внимание, что он не является линейным, что указывает на то, что канал ионов натрия зависит от напряжения. Зеленая линия показывает зависимость ВАХ, полученную путем суммирования натриевого и калиевого токов. Это приближает реальный мембранный потенциал и текущее соотношение клетки, содержащей оба типа каналов.

    Характеристики двигателя постоянного тока

    Основной характеристикой двигателя постоянного тока, определяющей его свойства в установившемся режиме, является механическая характеристика

    при и.

    Уравнение механической характеристики получается из (6.1)

    . (6.2)

    На рис. 6.42 представлены механические характеристики при различных способах возбуждения. Механическая характеристика двигателя параллельного возбуждения при небольшой размагничивающей реакции якоря () имеет слабо падающий характер (кривая 1).

    Если размагничивающая реакция двигателя параллельного возбуждения велика (поток Ф существенно снижается при увеличении нагрузки), то механическая характеристика будет иметь положительный наклон (кривая 1). Такая характеристика, как правило, не позволяет получить установившийся режим.

    В двигателях последовательного возбуждения результирующий поток пропорционален току якоря,

    ,

    а электромагнитный момент пропорционален квадрату тока якоря,

    .

    С учетом этих соотношений уравнение механической характеристики двигателя последовательного возбуждения приобретает вид

    . (6.3)

    Этому уравнению соответствует кривая 2 (рис. 3), имеющая гиперболический характер. При частота вращения якоря, поэтому двигатели последовательного возбуждения не могут работать в режиме холостого хода.

    Вместе с тем квадратичная зависимость электромагнитного момента от тока якоря дает важное преимущество двигателям последовательного возбуждения при перегрузках перед двигателями параллельного возбуждения, момент которых является линейной функцией тока . Это преимущество особенно существенно при пуске, так как при одном и том же пусковом токе () двигатели последовательного возбуждения развивают больший момент, чем двигатели параллельного возбуждения. Поэтому двигатели последовательного возбуждения получили широкое применение на транспортных установках, где пусковой режим является одним из основных режимов работы.

    Механическая характеристика двигателя смешанного возбуждения (кривая 3 рис. 3) занимает промежуточное положение. Обладая близкими с двигателями последовательного возбуждения свойствами при перегрузках, двигатели смешанного возбуждения могут работать и при малых нагрузках, что позволяет осуществить рекуперацию энергии в сеть при (рис. 6.42), так как машина переходит в генераторный режим (). Это свойство можно использовать в транспортных установках при движении с горы, создавая тормозной момент и одновременно возвращая в сеть запасенную кинетическую энергию.

    Регулирование частоты вращения двигателей постоянного тока

    Согласно (6.2), регулирование частоты вращения двигателей постоянного тока можно осуществлять путем изменения потока Ф, введения дополнительного сопротивления в цепь якоря иизменения напряжения сети . В двигателях параллельного возбуждения наиболее просто осуществляется регулирование изменением потока, реализуемого с помощью реостатав цепи возбуждения. При увеличении сопротивленияпотокФ уменьшается и частота вращения растет. На рис. 4а представлены механические характеристики двигателя параллельного возбуждения при трех значениях потока. Таким способом регулируют частоту вращения в пределах ,. Верхний уровень частот ограничивается условиями коммутации. Кроме того, при глубоком уменьшении потока возбуждения усиливается размагничивающее действие реакции якоря, жесткость механической характеристики растет, и падающая характеристика при номинальном потоке может стать возрастающей при ослабленном потоке, что приведет к нарушению устойчивой работы двигателя.

    Регулирование частоты вращения двигателя путем введения в цепь якоря дополнительного сопротивления позволяет изменять частоту вращения вниз от номинальной в широких пределах (рис. 4 б). Но этот способ не экономичен. Полезная мощность двигателя при постоянном моменте пропорциональна частоте вращения (без учета потерь в якоре):

    ,

    а потребляемая из сети мощность от частоты вращения не зависит,

    .

    Поэтому КПД двигателя пропорционален частоте вращения якоря,

    .

    Кроме того, при введении дополнительного сопротивления жесткость механической характеристики двигателя снижается, что может привести к ухудшению работы приводного механизма.

    Более совершенным способом регулирования частоты вращения вниз является регулирование путем изменения подводимого к двигателю напряжения. На рис. 5 представлены механические характеристики двигателя параллельного возбуждения для трех значений напряжений. Жесткость механических характеристик практически не меняется, поэтому таким способом можно регулировать частоту вращения от номинальной до нуля.

    В качестве источников регулируемого напряжения используются генератор постоянного тока (рис. 2, а) либо полупроводниковый выпрямитель (рис. 2, б). Схема с полупроводниковым выпрямителем обладает более высоким быстродействием по сравнению со схемой генератор-двигатель, но уступает по перегрузочной способности. Кроме того, работа полупроводникового преобразователя ухудшает качество электрической энергии сети переменного тока из-за генерации высших гармоник напряжения и тока.

    Рассмотренные способы регулирования частоты вращения двигателей параллельного возбуждения применяются и в двигателях смешанного возбуждения.

    Регулирование частоты вращения двигателей последовательного возбуждения осуществляется путем изменения тока в последовательной обмотке или напряжения якоряU с помощью шунтирующих реостатов (рис. 6.46).

    При шунтировании обмотки возбуждения ток уменьшается и частота вращения якоря растет, а при шунтировании якоря напряжение якоря уменьшается, поэтому частота вращения падает.

    Регулирование частоты вращения вверх осуществляется практически при постоянном КПД

    .

    Верхний уровень частоты вращения ограничивается условиями коммутации.

    Регулирование частоты вращения вниз может осуществляться вплоть до нуля, однако КПД этого способа снижается пропорционально напряжению якоря и частоте вращения:

    ,

    где — частота вращения якоря при.

    Таким образом, этот способ регулирования так же, как и реостатный способ регулирования частоты вращения двигателя с параллельным возбуждением, является неэкономичным. Он используется лишь в случае двигателей малой мощности.

    Вольт-амперная характеристика

    Вольт-ампе́рная характери́стика (ВАХ) — зависимость тока, протекающего через двухполюсник, от напряжения на этом двухполюснике. Описывает поведение двухполюсника на постоянном токе. Также ВАХ называют функцию, описывающую эту зависимость и график этой функции.

    Обычно рассматривают ВАХ нелинейных элементов (степень нелинейности определяется коэффициентом нелинейности β = U I ⋅ d I d U >cdot >> ), поскольку для линейных элементов ВАХ представляет собой прямую линию (описывающуюся законом Ома) и потому тривиальна.

    Примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.

    Для трёхполюсных элементов с управляющим электродом (таких, как транзистор, тиристор или электровакуумный триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при заданном токе или напряжении на третьем управляющем электроде элемента.

    В реальной системе, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства рабочая точка на ВАХ может пробегать по траекториям, отклоняющимся от ВАХ, измеренной на постоянном токе или низких частотах. Обычно такое отклонение связано с присущими инерционными свойствами прибора или ёмкостью и индуктивностью присоединённой к прибору цепи или паразитными ёмкостью и индуктивностью.

    Форма ВАХ полупроводниковых приборов зависит от температуры его полупроводниковой структуры, например, от температуры p-n перехода. Для полупроводниковых диодов с p-n переходом при увеличении температуры угол наклона прямой и обратной ветвей ВАХ увеличивается.

    Преобразования ВАХ [ | ]

    При последовательном или параллельном включении двух или нескольких двухполюсников вид ВАХ результирующего двухполюсника изменяется.

    При параллельном соединении двух двухполюсников, напряжения на обоих приборах равны и при этом общий ток равен сумме токов, при последовательном — токи через каждый прибор равны, а общее напряжение на такой цепи равно сумме напряжений на элементах.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector