Avtoargon.ru

АвтоАргон
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Популярные автомобили

Популярные автомобили

Мощность и момент на колесах

В первой части мы рассмотрели понятия мощности и момента двигателя. Теперь же посмотрим что происходит на колесах. Как зависит момент на колесах от текущей передачи. На каких оборотах двигателя лучше переключаться для наибольшей топливной экономичности и для интенсивного разгона. Посмотрим видео разгона VW Polo GTI с коробкой DSG7 до максимальной скорости.

Возьмем автомобиль VW Polo GTI с рядной четверкой объемом 1,4 л с непосредственным впрыском и наддувом от нагнетателя и турбокомпрессора. Двигатель развивает 180 л.с. (на 6200 об/мин) и за счет «двойного» наддува имеет полку момента в 250 Н·м в диапазоне с 2000 до 4500 об/мин.

VW Polo GTI с коробкой DSG7. Максимальная скорость 229 км/ч

Момент и мощность на колесах

Мощность на оси колес примерно равна мощности выдаваемой двигателем за вычетом КПД трансмиссии и всех вращающихся компонентов между колесами и двигателем. Момент же может сильно отличаться в зависимости от выбранной передачи. Момент на оси колес равен моменту на двигателе, умноженному на произведение передаточного числа передачи в коробке и главной пары в дифференциале. Каждая передача характеризуется своим передаточным числом, равным отношению количества зубцов на шестернях. Высшие передачи могут иметь передаточное число меньше единицы, но из-за понижающей пары в дифференциале на колеса все равно передается больший момент. Скорость же вращения колес падает прямо пропорционально росту момента. Также нужно принимать во влияние радиус колес. Чем он больше, тем меньше крутящего момента с двигателя будет прикладываться для движения автомобиля, но тем быстрее он будет ехать.

Рассмотрим момент, передаваемый на колеса, в зависимости от передачи.

Зависимость момента на колесах от их угловой скорости на разных передачах. Для сравнения приведен момент на коленвале двигателя в зависимости от его угловой скорости

Коробка передач имеет передаточное число для первой передачи равное 15,53. Это означает что момент на оси колеса будет умножен почти в 15 раз. Для момента на двигателе в 250 Н·м момент на колесах будет равен 3880 Н·м. Но при этом максимальная угловая скорость колеса будет составлять 419 об/мин при оборотах двигателя 6500 и этим будет обусловлена максимальная скорость на первой передачи.

Рассмотрим зависимость момента от скорости. Для диска с параметрами 7Jx17 и покрышек с профилем 215/40 радиус колеса составляет 0,3 м. Зная угловую скорость колеса легко вычислить скорость автомобиля.

Зависимость момента на колесах от скорости автомобиля

Обратим внимание на то, что на первой передаче момент на колесах при оборотах двигателя в 6500 об/мин больше, чем для всего диапазона второй передачи. Хотя момент на двигателе меньше, чем если бы мы переключились на вторую передачу. Это означает что для сохранения максимального момента на колесах переключаться с первой на вторую стоит лишь тогда, когда двигатель упрется в ограничитель оборотов, несмотря на то, что мы прошли уже и максимум момента и максимум мощности на двигателе.

Тоже самое справедливо и для второй передачи, а начиная с третьей, передаточные отношения передач подобраны так, что момент для переключения передач (для сохранения максимального момента на колесах) смещается на более ранние обороты и проходит где-то в районе максимума мощности.

Режим экономии топлива

Режим максимальной экономии топлива характеризуется движением на малых оборотах. Ведь для поднятия оборотов нужно больше открыть дроссельную заслонку, впуская больше воздуха в двигатель. А пропорционально росту воздуха будет расти и потребление топлива. При этом, чтобы езда была уверенной необходимо ехать на максимальном моменте. (Кроме того двигатель развивая максимальный момент будет работать экономичнее чем даже на меньших оборотах, но идя «внатяг»). Для этого нужно переключать передачи так, чтобы обороты двигателя на следующей передачи попадали в зону (начала полки) максимального момента.

Рассмотрим зависимость скорости автомобиля в зависимости от оборотов двигателя на разных передачах в режиме экономии топлива.

Красной стрелкой отмечена скорость на разных передачах

Очень кстати приходится наличие «двойного» наддува, позволяющего получить максимум момента начиная с 2000 об/мин. А наличие семиступенчатой коробки DSG позволяет в полной мере реализовать тяговитость низов. Автоматы с двойным сцеплением имеют очень быстрое время переключения передач, а благодаря плавной передачи момента с одной передачи на другую, делают переключение очень плавным (без рывков). Все это позволяет двигаться на скорости 90 км/ч при 2000 об/мин (максимальные обороты при разгоне при этом не превышают 3000 об/мин). Этим достигается крайне эффективный с точки зрения топливной экономичности режим передвижения. Большое количество ступеней нужно для экономичного передвижения на невысоких оборотах. Заявленный расход в смешанном цикле составляет 6л/100км.

Режим интенсивного разгона

Интенсивный разгон характеризуется переключением передач таким образом, чтобы на колесах был наибольший момент. Причем, как мы уже выяснили, в зависимости от передаточных чисел передач может быть так, что момент на колесах на текущей передаче больше чем на следующей, хотя момент на двигателе наоборот меньше.

Зависимость скорости от оборотов двигателя на разных передачах в режиме интенсивного разгона. Пунктиром приведены характеристики двигателя — момент и мощность

В заключении посмотрим видео с разгоном автомобиля до максимальной скорости. DSG7 в режиме Sport не включает седьмую передачу.

Вычислить мощность двигателя по крутящему моменту и оборотами

Если сила, действуя на какое-либо тело, перемещает его, то говорят, что сила совершает работу. Работа есть величина, измеряемая произведением силы (в кг) на путь (в м) перемещения тела по направлению силы. Единицей работы является килограммометр (кгм).

Газы, приводя в движение поршень, также совершают работу. При это переменное давление газов на поршень во время рабочего хода может произвести такую же работу, как некоторое постоянное давление, действующее на протяжении всего рабочего хода. Очевидно, что это условное постоянное давление будет значительно меньше максимального давления при вспышке (30-40 кг/см 2 для карбюраторного двигателя), но больше минимального к концу рабочего хода (3-5 кг/см 2 ).

Однако часть работы, производимой газами в течение рабочего хода, затрачивается на совершение вспомогательных тактов, главным образом такта сжатия. Поэтому полезная работа за весь цикл будет меньше работы за один рабочий ход на величину этих затрат.

Условное постоянное давление, которое может на протяжении рабочего хода произвести работу, равную полезной работе за весь рабочий цикл, называется средним индикаторным давлением. У автомобильных двигателей среднее индикаторное давление колеблется в пределах 8-12 кг/см 2 (при наибольшем поступлении горючей смеси в цилиндры).

Следовательно, для определения работы, производимой данным двигателем за один рабочий цикл, нужно, зная среднее индикаторное давление газов, подсчитать силу давления газов на поршень (в кг) и умножить ее на длину хода поршня (в м). Работа, производимая двигателем в единицу времени — 1 секунду, называется мощностью двигателя.

Единицей мощности служит килограммометр в секунду (кгм/сек) или условная единица — лошадиная сила, равная 75 кгм/сек.

Для того чтобы уяснить, от чего зависит мощность двигателя, произведем примерный подсчет мощности одноцилиндрового четырехтактного двигателя, имеющего следующие данные: диаметр поршня 80 мм, ход поршня 100 мм, число оборотов вала двигателя 3600 в минуту, среднее индикаторное давление газов 8 кг/см 2 . Силу давления газов, воспринимаемую поршнем, можно определить, вычислив площадь днища поршня в квадратных сантиметрах и умножив эту величину на среднее индикаторное давление газов (8 кг/см 2 ).

Днище поршня представляет собой круг, площадь которого равна постоянному числу 3,14 (П), умноженному на радиус в квадрате (R 2 ). Радиус равен половине диаметра, т. е. в рассматриваемом случае 40 мм (80 : 2), или 4 см.

Читать еще:  Аэроглиссеры из автомобильного двигателя своими руками

Следовательно, площадь днища поршня в этом случае будет равна

3,14 X 4 2 = 50,24 см 2 , или, округленно, 50 см 2 .

Отсюда полное давление газов, действующее на поршень, составит

8 кг/см 2 X 50 см 2 = 400 кг.

Следовательно, работа, произведенная поршнем за каждый рабочий цикл при ходе поршня 100 мм, или 0,1 м, будет равна

400 кг X 0,1 м = 40 кгм.

Так как рабочий цикл четырехтактного двигателя совершается за два оборота коленчатого вала, число рабочих циклов при 3600 об/мин составит

3600 : 2 = 1800 в минуту, а в секунду

1800 : 60 = 30 рабочих циклов.

Отсюда мощность двигателя будет равна

40 кгм X 30 = 1200 кгм/сек,

1200 : 75 = 16 л.с.

Мощность, развиваемая газами внутри цилиндров двигателя, называется индикаторной мощностью и определяется по индикаторной диаграмме, снимаемой с двигателя автоматическим прибором — индикатором.

Площадь индикаторной диаграммы пропорциональна работе газов за рабочий цикл.

Часть индикаторной мощности тратится на преодоление трения в двигателе (между подшипниками и шейками коленчатого вала, поршнями и стенками цилиндров и т. д.) и привод вспомогательных механизмов (подъем клапанов, привод насосов систем охлаждения и смазки, приборов электрооборудования и т. д.).

Поэтому эффективная мощность, т. е. мощность, развиваемая на коленчатом валу двигателя, в зависимости от режима работы двигателя будет меньше индикаторной мощности на 10-20%. При этом условии эффективная мощность указанного в примере, двигателя составит около 13-14 л. с.

Очевидно, мощность многоцилиндрового двигателя равна мощности одноцилиндрового двигателя, умноженной на число цилиндров.

Как видно из приведенного выше примера, мощность двигателя зависит от диаметра и величины хода поршня, среднего индикаторного давления газов, числа оборотов коленчатого вала двигателя в единицу времени.

Однако мощность двигателя возрастает с увеличением числа оборотов коленчатого вала только до определенной величины, зависящей от конструктивных особенностей двигателя. Это объясняется тем, что с увеличением числа оборотов резко возрастают механические потери на трение и уменьшается среднее индикаторное давление, так как ухудшается наполнение цилиндров горючей смесью. Наполнение цилиндров уменьшается потому, что увеличивается сопротивление прохождению смеси в клапанах (гидравлические потери) и сокращается продолжительность открытия впускного клапана.

Крутящий момент двигателя

Две параллельные и равные силы, направленные в противоположные стороны и действующие в одной плоскости, называются парой сил.

Под действием пары сил тело не остается в покое, а вращается. Такой случай мы имеем при вращении водителем рулевого колеса; усилие рук водителя создает пару сил (рис. 19).
Рис. 19 — Схема действия пары сил

Действие пары сил на тело зависит от величины этих сил и расстояния между точками их приложения, называемого плечом пары. Величина пары характеризуется ее моментом, т. е. произведением одной из сил в килограммах на плечо в метрах. Если, например, сила, с какой каждая рука водителя действует на рулевое колесо, равна 5 кг, а плечо пары составляет 0,4 м, то момент, вызывающий вращение рулевого колеса, будет равен 2 кгм. Этот момент называется крутящим (вращающим) моментом.

Во время рабочего хода в кривошипно-шатунном механизме также возникает пара сил, вызывающая вращение коленчатого вала.

Давление газов на поршень, передаваемое через шатун на кривошип коленчатого вала, создает силу Р (рис. 20, слева).
Рис. 20 — Схема пары сил, приложенной к коленчатому валу

Но всякая сила вызывает (по закону равенства действия и противодействия) равную себе, но действующую в противоположном направлении, реактивную силу, или реакцию.

Другой силой пары будет реакция Р, являющаяся силой сопротивления вращению коленчатого вала, вследствие трения в опорных подшипниках.

При положении поршня в верхней мертвой точке (рис. 20, справа) плечо пары, а следовательно, и крутящий момент равны нулю — поршень из этого «мертвого» положения выводится маховиком. По мере движения поршня во время рабочего хода меняются и сила, и плечо пары, соответственно с чем изменяется и крутящий момент. Изменения величины крутящего момента сглаживают применением маховика и увеличением числа цилиндров двигателя.

Крутящий момент, развиваемый двигателем, определяется при помощи специальных испытательных установок и характеризует работу, совершаемую двигателем за один оборот коленчатого вала. Зная величину крутящего момента и соответствующее ему число оборотов коленчатого вала двигателя, можно определить эффективную мощность двигателя.

Числа оборотов коленчатого вала, соответствующие максимальному крутящему моменту и максимальной мощности двигателя, не совпадают. Если максимальную мощность двигатель развивает обычно при 2800-3600 об/мин, то максимальный крутящий момент он развивает примерно при 1400-2000 об/мин. При 1400- 2000 об/мин, если дроссельная заслонка карбюратора открыта полностью, происходит наибольшая подача горючей смеси в цилиндры, среднее индикаторное давление газов достигает максимальной величины, а поэтому и крутящий момент оказывается наибольшим.

Экономичность двигателя

Экономичность двигателя характеризуется удельным расходом горючего, т. е. часовым расходом горючего, приходящимся на одну лошадиную силу эффективной мощности, развиваемой двигателем на определенном режиме работы.

Например, двигатель развивает эффективную мощность в 50 л. с. и расходует при этом в час 11 кг горючего. Следовательно, удельный расход горючего будет

Как измерить мощность подвесного мотора. Измерьте мощность подвесного мотора: на стенде или мулинеткой

Какую мощность стал развивать мотор после переборки или ремонта, модернизации или форсировки? Какова потеря мощности, вызванная износом?

На эти и многие подобные вопросы наиболее точный ответ дают только испытания, в процессе которых может быть получена внешняя скоростная характеристика (рис. 1), — зависимость развиваемой двигателем мощности от числа оборотов при максимальном открытии дроссельной заслонки.

Рис. 1. Внешняя скоростная (1) и
винтовая (2) характеристики мотора

Непосредственно мощность двигателя не может быть измерена, и определяется косвенным путем — посредством замера крутящего момента и числа оборотов коленчатого вала с последующим расчетом по известной формуле:

Ne=Mкрnкв 716,2л. с.,

где Mкр — крутящий момент, кгм; nкв — число оборотов коленчатого вала, об/мин.

Крутящий момент измеряют на специальных тормозных стендах. (Его можно установить для коллективного пользования на любой лодочной стоянке.) Основная и самая сложная его часть — собственно тормоз с весовым механизмом, с помощью которого можно измерять и регулировать задаваемую двигателю нагрузку (тормозной момент).

Существует много типов механических, гидравлических и электрических тормозов, но самый простой и доступный для самостоятельного изготовления — колодочный (механо-фрикционный) тормоз. Испытательный стенд с таким тормозом состоит (рис. 2) из жесткой стальной (например, сварной из уголка) рамы с «транцевой» доской для навешивания мотора, щитка для закрепления тахометра и силоизмерителя (динамометра), тормозного барабана и колодочного тормоза.

Рис. 2. Устройство стенда
с механическим тормозом

1 — топливный бак; 2 — винт регулировки
тормозного момента; 3 — испытуемый мотор;
4 — доска для навешивания мотора;
5 — динамометр; 6 — тахометр дистанционный;
7 — пластина (демпфер); 8 — рычаг тормоза;
9 — колодочный тормоз с барабаном;
10 — сварная рама.

Колодочный тормоз (рис. 3) состоит из чугунного тормозного барабана, насаженного на гребной вал мотора вместо винта, нижней колодки тормоза, жестко связанной с рычагом, и верхней — свободно вращающейся на пальце. Винтом, который изменяет силу натяжения колодок, регулируется тормозной момент. Рычаг подсоединен к силоизмерительному устройству — динамометру. Для гашения колебаний рычага в плоскости вращения тормозного барабана к этому же концу рычага в горизонтальной плоскости приварена стальная пластина.

Рис. 3. Устройство колодочного тормоза

1 — нижняя скоба; 2 — гайка; 3 — втулка; 4 — пружина; 5 — винт регулировки тормозного
момента; 6 — верхняя скоба; 7 — винт крепления колодки; 8 — тормозная колодка;
9 — тормозной барабан; 10 — скоба для подсоединения динамометра; 11 — рычаг тормоза;
12 — пластина (демпфер); 13 — кница; 14 — палец.
Читать еще:  Шкода октавия на горячем двигателе плавают обороты

Перед замером мощности стенд устанавливается в резервуар с водой или прямо на дно водоема так, чтобы обеспечивалось нормальное заглубление «ноги» подвесного мотора. Можно вместо рамы сварить прямоугольный бак и наполнять его водой до необходимого уровня.

Мотор запускают с включенным ходом «вперед» при полностью отпущенных колодках тормоза. Следя за тахометром, постепенно увеличивают обороты и так же постепенно затягивают колодки, добиваясь, чтобы двигатель развил максимальное паспортное число оборотов при полностью открытом дросселе (положение ручки «полный газ»). Этот момент — начало измерений. Производится первая запись: показания тахометра в об/мин и показания динамометра в кг. Затем колодки вновь подтягиваются так, чтобы обороты двигателя снизились на 200-300 об/мин, после чего вновь записываются показания приборов. Так ступенями (ручка газа все время в положении «полный газ») через приблизительно равные интервалы снижается число оборотов, и на каждой ступени производится запись показаний тахометра и динамометра. Тормозить двигатель достаточно до 3000-3500 об/мин. После этого производится такое же ступенчатое отпускание колодок с записью показаний приборов и испытание заканчивается, когда обороты двигателя вновь достигнут своего номинального значения.

Крутящий момент (а он равен по абсолютной величине тормозному) вычисляется по формуле:

где Р — показания динамометра, кгс; L — плечо тормозного рычага, измеренное в метрах от оси гребного вала до точки крепления к рычагу тяги динамометра.

Вычисляя мощность, необходимо учитывать передаточное отношение редуктора, так как число оборотов измерялось у коленчатого вала, а тормозной момент на гребном валу.

Ne=Mкрnквiр 716,2л. с.,

где iр — передаточное отношение редуктора ( iр ).

По этой формуле вычисляется значение мощности на гребном валу, т. е. с учетом всех механических потерь в передаче. После подсчета мощности по всем точкам замера строится график зависимости Ne= &#402(n) (рис. 1).

При использовании тахометра с ценой деления 100 об/мин, динамометра с ценой деления 0,2 кг (и принимая погрешность замера длины рычага ±1 мм) погрешность замера мощности будет лежать в пределах 2-2,5%, то есть при мощности мотора 20 л. с. абсолютная погрешность будет равна ±0,5 л. с. Для практических целей такая точность вполне достаточна.

Можно построить график зависимости мощности от оборотов и не прибегая к испытаниям на стенде. Для этого нужно воспользоваться тарированным лопастным гидравлическим тормозом (мулинеткой). На рис. 4 показана мулинетка, рассчитанная для применения на моторах мощностью 20-25 л. с., а на рис. 5 ее тормозная характеристика — зависимость потребляемой мощности от числа оборотов.

Рис. 4. Мулинетка для подвесных моторов мощностью 20-25 л. с.

Рис. 5. Тормозная характеристика мулинетки

При вращении мулинетки, установленной вместо гребного винта, вся мощность мотора расходуется на преодоление сил сопротивления вращению.

Поэтому сам процесс измерений очень прост — мулинетка устанавливается вместо гребного винта, запускается мотор (установленный прямо на транце лодки) и при включенном ходе «вперед» на полном газу замеряется число оборотов коленчатого вала. Далее с учетом передаточного отношения редуктора по тормозной характеристике мулинетки определяется мощность, развиваемая мотором на гребном валу при данном числе оборотов. Таким образом находится одна точка внешней скоростной характеристики мотора. Для получения всей скоростной характеристики в интересующем нас диапазоне чисел оборотов необходимо воспользоваться эмпирическими зависимостями (рис. 6 и 7), установленными на основании обработки статистического материала и многократно проверенными автором на практике.

Рис. 6. Внешняя скоростная
характеристика 2-тактных подвесных
лодочных моторов в относительной
системе координат

Рис. 7. График ограничения номинального числа оборотов в зависимости
от цилиндровой мощности мотора

Мощность двигателя внутреннего сгорания (и, в частности, двухтактного) зависит от рабочего объема и числа цилиндров, числа оборотов, теплоты сгорания горючей смеси и ряда безразмерных коэффициентов, характеризующих рабочий процесс.

Относительная мощность определяется по формуле:

N=N Nmax=&#966(n ne)

где вследствие простого алгебраического сокращения размерных величин остаются лишь безразмерные коэффициенты (индикаторный и механический к. п. д., коэффициент избытка воздуха и коэффициент наполнения). Поскольку их относительное изменение от числа оборотов для двухтактных двигателей потребительских подвесных моторов практически одинаково, то в относительной системе координат внешние скоростные характеристики моторов как бы сливаются в одну кривую независимо от числа цилиндров, рабочего объема и системы продувки (рис. 6). Пользуясь этой кривой или ее уравнением, можно по одной известной точке Nmax и зная ne рассчитать всю внешнюю характеристику подвесного мотора в абсолютных координатах.

Для этого необходимо вначале определить обороты мулинетки с учетом передаточного отношения редуктора ip, то есть

и по тормозной характеристике (рис. 5) найти тормозную мощность N. Делением паспортной мощности на число цилиндров находим цилиндровую мощность Nц и с помощью графика 7 определяем максимальные обороты n. Далее определяются относительные обороты двигателя с мулинеткой

n=nM ne

и по графику 6 (или по формуле) находится относительная мощность, а из выражения

N=N Nmax

вычисляется максимальная мощность.

Последовательно принимая значения меньше единицы (например, 0,95; 0,9; 0,85; и т. д.), с помощью графика 6 определяем другие точки внешней характеристики.

Следует сказать, что при равных условиях точность этого метода несколько ниже, чем при испытаниях на стенде. Погрешность его определяется, с одной стороны, погрешностью графиков (которая уже независит от экспериментатора), и с другой — погрешностью измерения числа оборотов при испытаниях.

Для того чтобы общая относительная погрешность конечного результата при определении Nmax не превысила 2-2,5%, необходимо измерять число оборотов не грубее, чем ±15 об/мин. К такой точности можно приблизиться, использовав для определения оборотов секундомер и счетчик импульсов, с помощью которых можно определить количество оборотов коленчатого вала за какой-то промежуток времени (не менее 25-30 секунд) и затем подсчитать среднее значение числа оборотов в минуту.

При работе с мулинеткой мотор должен быть заглублен так, чтобы полностью исключалась возможность прососа к ней воздуха; а также обеспечена работа в условиях «безграничной жидкости», т. е. эксперимент должен производиться на глубокой воде и в отсутствие стенок.

Мулинетку можно использовать для сравнительной оценки нескольких однотипных моторов: наибольшую мощность имеет тот мотор, который с той же мулинеткой развивает наибольшее число оборотов.

Графики рис. 5 и 6 могут быть использованы и самостоятельно, когда по каким-либо причинам отсутствует «фирменная» скоростная характеристика. В этом случае с их помощью по паспортным данным мотора Nном и nном может быть построена характеристика, которая является некоторой средней характеристикой для моторов данной марки.

Поделитесь этой страницей в соц. сетях или добавьте в закладки:

Что надо знать про мощность и крутящий момент в автомобиле

Ведь время лошадей как основного вида транспорта давно прошло. И не совсем понятно, какое отношение эти великолепные животные имеют к автомобилям.

Но связь действительно есть. Лошадиные силы или просто ЛС давно стали основной единицей измерения мощности в отношении двигателей автомобилей и мотоциклов. И чем больше этих сил в авто, тем считается лучше. Целый табун позволяет развивать большую скорость и быстрее разгоняться.

При этом нужно понять, что означают лошадиные силы, почему их используют и каким образом делаются подсчёты.

Мощность двигателя

Расчет мощности двигателя автомобиля
5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как: — обороты двигателя, — объем мотора, — крутящий момент, — эффективное давление в камере сгорания, — расход топлива, — производительность форсунок, — вес машины — время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью. Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с

Читать еще:  Ваз 2112 почему глохнет двигатель при резком сбрасывании оборотов
Как рассчитать мощность через крутящий момент
Как рассчитать мощность по объему двигателя

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида: Ne = Vh * pe * n/120 (кВт), где: Vh — объём двигателя, см³ n — частота вращения, об/мин pe — среднее эффективное давление, МПа (на обычных бензиновых моторах оставляет порядка 0,82 — 0,85 МПа, форсированных — 0,9 МПа, а для дизеля от 0,9 и до 2,5 МПа соответственно). Для получения мощности движка в «лошадках», а не киловаттах, результат следует разделить на 0,735.

Расчет мощности двигателя по расходу воздуха

Такой же приблизительный расчет мощности двигателя можно определять и по расходу воздуха. Функция такого расчета доступна тем, у кого установлен бортовой компьютер, поскольку нужно зафиксировать значение расхода, когда двигатель автомобиля, на третьей передаче, раскручен до 5,5 тыс. оборотов. Полученное значение с ДМРВ делим на 3 и получаем результат. Формула как рассчитать мощность ДВС по расходу воздуха в итоге выглядит так: Gв [кг]/3=P[л.с.] Такой расчет, как и предыдущий, показывает мощность брутто (стендовое испытание двигателя без учета потерь), которая выше на 10—20% от фактической. А еще стоит учесть, что показания датчика ДМРВ сильно зависят от его загрязненности и калибровок.

СОВЕТ ИНСТРУКТОРА И ПСИХОЛОГА

Хотите тормозить лучше, чем ABS? Попробуйте освоить технику импульсного торможения. Как обычно вы тормозите? Нажимаете педаль тормоза до упора и до остановки автомобиля. При этом чувствуете, как в ногу “барабанит” ABS. Попробуйте тормозить отдельными импульсами: нажмите педаль тормоза и постарайтесь отпустить ее до того, как успеет сработать ABS, потом снова нажмите педаль, стараясь опередить ABS. И так до полной остановки автомобиля. Практика показывает, что данная техника торможения очень эффективна. Только тренироваться нужно на закрытой от движения площадке, дабы ничего не случилось, пока вы не освоите эту технику. Кстати, и с точки зрения психологии, такая техника является наиболее эффективной. Представьте, что вы едете ночью, нажимаете тормоз… А сзади едет уставший водитель, который просто может не заметить начало торможения. К тому же, когда он видит уже горящие тормозные огни (“стопы”), он их не воспринимает. Когда же вы тормозите импульсно, создается эффект мерцания – если первую вспышку водитель едущий за вами не заметит, то заметит все последующие.

У нас водители, прямо скажем, нецивилизованные, поэтому сигналить вам будут почти все. Скажем, в Америке или Германии, вас просто объедут без лишних замечаний в вашу сторону. Сам знаю, что всевозможные “требования” других водителей очень раздражают, а держать себя в руках и не обращать на них внимания может далеко не каждый.

Выше были указаны две цифры – 150 и 170 лошадиных сил. Учитывая, что седан путешественника довольно большой, 150 лошадиных сил хватит для уверенного подъема, но не надейтесь, что такой мотор мигом вынесет вас на любой подъем.

Минивэны сами по себе очень неторопливые и требовать от них какой-то особой динамики не приходится. Двигатели минивэнов не такие шустрые, как седаны. 90 лошадиных сил для минивэна – это вполне нормально. Ясно, речь идет не о динамичной езде, а просто о перемещении из пункта А в пункт Б. Если есть возможность, покупайте машину с турбодизельным двигателем. Она более экономна, чем версии с бензиновым двигателем, да и лошадок у нее будет побольше (больше, чем 90 – это уж точно). Если же хотите мощный двигатель, то выбор у вас один – или бензиновый двигатель максимального объема или турбодизель максимального объема. Последний будет дороже при покупке, но это окупится экономичностью этого мотора.

С джипами ситуация иная. Купив джип, даже не с самым мощным мотором, помехой на дороге вы не будете. Да и остальные участники движения зная, что джип – машина очень дорогая, дабы чего не случилось, будут уступать дорогу. Менталитет у нас такой.

Но хотелось бы поговорить немного о самих джипах. Первоначально джипы делались именно для бездорожья (для фермеров, спасательных бригад, научных экспедиций). Сами понимаете, мощность и динамичность здесь на втором плане, а на первом – бездорожье, точнее то, как джип справляется с этим бездорожьем. В последние годы ситуация сильно изменилась, как у нас, так и на Западе. На Западе все чаще и чаще джипы покупают самые обычные водители, которые даже и на бездорожье никогда не съезжают, считая, что джип безопаснее – мы это уже обсуждали. У нас джипы покупают состоятельные бизнесмены, которым джип нужен для поддержания престижа. Поэтому производители стараются сделать джипы аналогичные легковым автомобилям по управляемости и динамике разгона. Вот и получаются джипы, которые разгоняются до 100 км/ч всего за 6 секунд. Поэтому, покупая, джип, вы можете быть уверены, что с динамикой у вас будет все в порядке (это не касается китайских джипов, сами понимаете почему – за деньги, которые они стоят, нормальный джип вы не купите).

infourok.ru Мощность автомобильных двигателей

Определение мощности электродвигателя без бирки

При отсутствии техпаспорта или бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технической документации? Самые распространенные и быстрые способы, о которых мы расскажем в статье:

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Перейти к подробным габаритным размерам электродвигателей АИР

Р, кВт3000 об. мин1500 об. мин1000 об. мин750 об. мин
D1, ммL1, ммD1, ммL1, мм>D1, ммL1, ммD1, ммL1, мм
1,52250225024502860
2,22428603280
3243280
42860286038
5,5328038
7,532803848110
113848110
15421104811055
18,55560140
22485560>140
3065
3755>601406575
457575
556580170
75651407580170
9090
110708017090
132100210
1607590100210
200
25085170100210
315

Проверить мощность по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector