Avtoargon.ru

АвтоАргон
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое поршневая группа: общая теория и поршни СТК

Что такое поршневая группа: общая теория и поршни СТК

Поршневая группа двигателя включает в себя: поршень, поршневые кольца и поршневой палец.

Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.

Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.

Требования, которым должна соответствовать эта деталь:

  • температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С.
  • после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя.
  • зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
  • изготовление должно быть достаточно дешевым и отвечать условиям массового производства.

Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.

Устройство поршня

В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.

Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».

На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10». Поршень 2108 имеет диаметр 76 мм , модели 21083 и 2110 — 82 мм.

Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.

Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.

«Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.

Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.

В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.

Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведёт к его прогоранию.

По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.

Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор — 0,035-0,060 мм, для маслосъемного – 0,025-0,050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3 мм.

Головку поршня образуют днище и уплотняющая часть.

Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.

«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.

Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.

На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.

Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.

Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.

Одним из факторов, определяющих геометрию поршня, является необходимость снижения сил трения.

Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.

Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.

В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.

На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.

В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции, основанных на новых научных разработках.

Когда речь заходит об отечественных машинах (ВАЗ, Приора и пр.) приходиться всерьёз рассматривать компанию СТК и её продукцию. Самара Трейдинг Компани (сокращённо – «СТК») не случайно стала одним из самых популярных производителей поршневых групп. Всё дело исключительно в производстве, ведь оно уникально в своём роде.

Самым сложным и, в то же время, важным технологическим процессом при изготовлении поршневых систем является литьё. Однородность и прочность материалов, жаростойкость и твёрдость – всё это играет важнейшую роль. Стоит какому-то коэффициенту отклонится на 1% и поршень застрянет в цилиндре, шатун может легко искривиться и даже заклинить, нарушив целостность и исправность всего силового агрегата.

Полуавтоматические устройства и специальные высокотехнологические станки позволяют компании СТК осуществлять литьё поршней на высочайшем уровне. Данной технологии нет равных, на протяжении долгих десятилетий и благодаря кропотливой работе инженеров фабрика создаёт самые качественные поршневые кольца и поршни. Несмотря на автоматизацию всех процессов, процедура изготовления каждого поршня контролируется людьми. Каждый продукт проходит целую линейку тестов.

Стоит лишь посетить любую станцию техобслуживания и задать вопрос автомеханику «Какой поршень идеально подойдёт отечественному автомобилю?», и вы услышите ответ: «СТК». Всё дело в том, что каждый механик желает выполнить работу так, чтобы клиент не возвращался к нему и не приходилось нарушать гарантийные обязательства.

Несмотря на лидирование компании СТК существуют и другие неплохие аналоги, например, Кострома-мотордеталь. В сравнении с китайскими и европейскими поршнями, Кострома хорошо показала себя в отечественных машинах, однако сама конструкция этого поршня не способна уберечь водителя от самой зловещей неисправности – столкновения поршня и клапанов.

Безвытковые Поршни СТК, содержащие специальные проточки, не влияют пагубно на клапана головки блока цилиндров. Поэтому в случае гидравлического удара, даже при срыве цепи газораспределительного механизма, когда поршни «летят» вверх, а клапана – вниз, исход их столкновения невозможен, если в двигатель установлены поршни СТК. Всё благодаря специальным канавкам, проточенным в головке каждого поршня – новшеству инженеров самарской компании.

Если ваш автомобиль уже давно б/у, его компрессия вас вовсе не радует и вы отлично понимаете, что настало время менять поршневую, помните: оптимальными для двигателя будут поршневые группы Самара Трейдинг Компани (СТК).

Более подробно про поршни СТК можно прочесть здесь и здесь.

Поршневая группа. Состав функции. Основные требования к конструкции поршня. Конструктивная реализация указанных требований. Обоснование формы поршня.

Основные конструктивные элементы поршневого ДВС. Классификация поршневых двигателей. Компоновочные схемы поршневых двигателей. Комбинированные ДВС.

Читать еще:  Основные причины поломки поршня авто

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала. Он состоит из двух групп деталей: неподвижных и подвижных. К неподвижным деталям относятся: блок цилиндров, головки блока цилиндров, гильзы, крышка и картер маховика. К подвижным – поршни с кольцами и пальцами, шатуны, коленвал и маховик. Кривошипно-шатунный механизм может быть центральным, когда оси коленвала и цилиндров лежат в одной плоскости, или смещенным, когда оси коленвала и цилиндров лежат в разных плоскостях.

Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси и выпуска отработавших газов. Выполняются по двум конструктивным схемам: с верхним и нижним расположением коленвалов. Основные детали механизма газораспределения: впускные и выпускные клапана, коромысло, штанга, толкатель, распредвал.

Классификация поршневых двигателей.

1) По способу преобразования энергии давления газов во вращательное движение

a) поршневые двигатели с КШМ

2) По роду применяемого топлива:

a) на жидком топливе

3) По способу осуществления рабочего цикла

4) По способу воспламенения рабочей смеси:

a) с воспламенением от сжатия

b) с принудительным воспламенением

5) По способу охлаждения цилиндра

a) жидкостного охл.

6) По способу смесеобразования:

a) с внешним смесеобразованием

b) с внутренним смесеобразованием

7) По способу наполнения рабочего цилиндра:

Наддув – увеличение наполнения цилиндра двигателя воздухом путем увеличения давления на впуске.

Комбинированные двигатели – это двигатели, состоящие из поршневой части и нескольких компрессионных машин, а также из устройств подвода и отвода тепла, объединенных общим рабочим телом.

Комбинированные двигатели бывают:

— с механической связью (рисунок а )

— с газовой связью (рисунок б )

Для схемы а) «+» мощность турбины и компрессора могут быть различны.

Поршневая группа. Состав функции. Основные требования к конструкции поршня. Конструктивная реализация указанных требований. Обоснование формы поршня.

Состав поршневой группы:

2. уплотнительные, маслосъемные кольца

3. палец (поршневой)

4. ограничитель осевого перемещения поршневого пальца.

Функции поршневой группы:

1. воспринимать усилия от давления газов и сил инерции и передает их на шатун.

2. передает боковое давление от нормальной силы на стенку цилиндра.

3. обеспечивает герметичность внутри цилиндра.

4. выполняет роль золотникового устройства.

Основные требования к конструкции поршня:

1) Обеспечение герметичности от пропуска газов.

2) Эффективный отвод тепла от днища поршня в стенку цилиндра.

3) Минимальная тепловосприимчивость во внешней поверхности днища.

4) Повышенная износостойкость.

5) Обеспечение минимального расхода масла.

6) Минимальная масса при достаточной жёсткости и прочности.

7) Макс. Срок работы до первой переборки.

— с охлаждающей головкой

— без охлаждающей головки

В составных поршнях отъёмная головка изготовлена из жаропрочного материала. Форма поршня и его основные размеры определяются в 1-ю очередь условиями отвода воспринимаемого им тепла. Часть тепла отводится на подогревание рабочей смеси.

Форма поршня.

Поршень должен иметь наиболее простую (цилиндрическую) форму и по возможности симметричную относительно оси.

Форма днища определяется способом смесеобразования:

1. Плоское днище – наиболее распространено в двигателях с внешнем смесеобразованием.

«+» простота изготовления (min площадь соприкосновения с горячими газами)

2. Вогнутое – имеет благоприятную форму камеры сгорания, приближенную к сферической, при

3. Выпуклое днище – придает повышенную жесткость, менее склонен к образованию масленого нагара (используют в 2-х тактных двигателях) придает необходимое направление течения газов при продувке.

4. Клиновое днище – на ДВС с верхними клапанами

  1. Фигурное днище – с внутреннем смесеобразованием и центральным расположением форсунки; эта форма согласована с конфигурацией топливных факелов. Топливо не попадает на стенку цилиндра: ¯ расход, ¯ разжижение масла в цил.
  2. Камера сгорания выполнена в поршне – это обеспечивает

пленочное и объемно-пленочное смесеобразование.

  1. Камера сгорания прикрытого типа – теплонапряженность самая высокая

А 4 5

6 7

RMAX необходим для: ­ теплоотвода, ¯напряжений

Распределение температуры в поршне. Анализ распределения температуры. Доли отвода тепла отдельными элементами поршня. Материалы поршней. Дефекты поршней. Конструктивные мероприятия по предотвращению указанных дефектов.

Тепловое состояние.

  1. Участок с мах Т в центре днища представляет собой эллипс, вытянутый перпендикулярно оси поршневого пальца.
  2. Основной теплоперепад имеет место между днищем и нижнем поршневым кольцом.
  3. Падение Т в днище относительно невелико.
  4. Юбка поршня имеет одинаковую температуру.

Алюминиевый поршень имеет меньшую температуру, чем чугунный при прочих равных условиях. Температура поршня с воздушным охлаждением на 30 -50% выше чем с водным.

Для изготовления поршней используют следующие материалы:

1. Серый ковкий чугун СЧ 24-44; СЧ28-48

для напряженных конструкций – ВЧ45 – высокопрочный чугун, обладает высокой износостойкостью и прочностью, низкий коэффициент линейного расширения.

2. Легкие литейные сплавы: Al 1, Al 10, Al 19 – хорошие литейные свойства, низкий коэффициент линейного расширения.

Деформируемые алюминиевые сплавы (ковкие сплавы) – АК2, АК4 (уменьшенная масса, высокая теплопроводность, высокая степень сжатия)

«+» алюминиевые сплавы менее склонны к нагарообразованию

«–» плохая работа на холодном двигателе, плохие механические качества, низкая теплостойкость, высокая стоимость.

3. Стали. Используются жаропрочные сплавы.

4. Титан. Сложно обрабатывать.

Дефекты поршней:

— перегрев поршня, сопровождается отпуском материала, ¯ механических свойств, ¯ твердости. Развиваются микротрещины, приводящие к выкрашиванию материала.

Выход: использовать материалы с высокой теплостойкостью.

— эрозия и коррозия поршня (днища) под действием горячих газов.

Выход: механическая обработка днища поршня, оксидирование, хромирование, никелирование.

— износ боковой поверхности (зависит от качества масла)

Поршневые кольца. Назначение, требования, классификация. Формы уплотнительных колец. Материалы поршневых колец. Влияние выбора материала на конструкцию кольца и поршневой группы.

Поршневые кольца предназначены для предотвращения прорыва газов между поршнем и стенкой цилиндра, а также для удаления лишнего масла со стенок цилиндра, препятствуя проникновению его в камеру сгорания. Кроме того, поршневые кольца отводят тепло от головки поршня к стенкам цилиндра.

По назначению подразделяются на:

Около 50% механических потерь осуществляется через кольца.

Верхнее поршневое кольцо нагревается до 350-400 º, через него отводится самое большое количество тепла, оно работает в условиях плохой смазки.

Маслосъемные кольца: устанавливаются на поршне за компрессионными.

— однокромочные — двухкромочные — составные кольца

Однокромочные: «+» кромка, соскабливающая масло со стенок цилиндра, излишки масла через отверстия уйдут на смазку поршневого пальца.

Двухкромочные: «+» также содержит канал для удаления избытка масла.

Составные кольца: «+» при деформации ведут себя более гибко, сохраняют уплотняющие функции при перекосах.

Требования к поршневым кольцам:

1. плотное прилегание к поверхности цилиндра и опорным поверхностям канавок поршня (геом. услов.).

2. небольшое начальное давление (0,5-20 кг/см 2 ) на стенку цилиндра (силовые условия).

-площадь контакта уменьшается, давление на стенку цилиндра увеличивается.

— «минутные кольца» быстрей прирабатываются

скручивающиеся кольца. деформации косого изгиба

— они во время работы скручиваются, больше ресурс, хуже уплотняющие свойства

— трапециевидные кольца, удаляет излишки масла со стенок цилиндра; зазор постоянно меняется по величине.

Уплотняющее действие поршневых колец

Уплотняющие действия достигаются:

1. прижатием колец к поверхности цилиндра.

2. в результате образования системы поршневых каналов и зазоров сложного лабиринта.

При сжатии поршневого кольца:

— за счет собственной силы упругости колец (0,5 — 30) кг/см 2

— за счет давления газов проникающих через зазоры в канавку (30 — 40) кг/см 2

Материалы поршневых колец: чугун, сталь.

1. Механическая прочность при высоких температурах.

3. Низкий коэффициент трения при высоких температурах.

Чугун: серый (Ч), высокопрочный (ВЧ)

Покрытие стальных колец:

-покрытие молибденом (очень дорого), азотирование (большая вредность), титановое покрытие + азотирование = нитрид титана (высокая твердость).

Насосное действие уплотнительных колец. Мероприятия по предотвращению насосного эффекта. Уплотняющее действие поршневых колец. Замки поршневых колец. Назначение зазора в замке.

Насосные действия уплотнительных колец.

Компрессионные кольца не препятствуют попаданию масла в камеру сгорания и при сгорании выделять вредные вещества.

а) поршень движется от ВМТ к НМТ, кольца за счет силы инерции прижаты к верхним поверхностям каналов(происходит впуск). Масло соскабливается нижним кольцом со стенки цилиндра. За счет гидравлического подпора давление масла ‹

б) поршень дошел до НМТ и пошел вверх. Направление сил инерции изменилось и изменилось положение колец. Масло вытеснилось в область меньшего давления

в) поршень пришел в ВМТ и пошел вниз.

Читать еще:  Поршневая группа двигателя: основные составляющие

Т.о. масло постепенно попадает в камеру сгорания. Для предупреждения этого устанавливаются маслосъемные кольца.

Замки поршневых колец.

Зазоры в замкевыбираются следующим образом: ∆ = ∆` + ∆«

∆« — гарантированный зазор; ∆« = 0,1-0,2 мм он нужен для гарантированной работы кольца, в противном случае оно ломается. При нагреве до опр. Тº, внешняя окружность кольца удлиняется на πD·αК·∆tК

αК – коэффициент линейного расширения, диаметр цилиндра при этом увеличивается на πD·αЦ·∆tЦ , при этом зазор в замке уменьшается на

∆ — холодный зазор; ∆` — горячий зазор.

Эффективным средством увеличения сил, прижимающих кольцо к цилиндру — применение расширителя.

Расширитель: они увеличивают срок службы поршневых

колец. Их ставят под последние или 2-3 кольца, маслосъемные

Устройство автомобиля

Основные узлы устройства автомобиля

Несмотря на огромное число моделей и брендов, при детальном рассмотрении оказывается, все легковые транспортные средства устроены одинаково.

Основные части любого автомобиля:

  1. Двигатель (мотор). Устройство трансформирует тепловую энергию в механическую, что необходимо для передачи крутящего момента к колесам. Другими словами, благодаря ему машина едет;
  2. Трансмиссия (силовая передача). Отвечает за тот самый крутящий момент, который стимулируется источником энергии от мотора. В данный узел входят следующие агрегаты: коробка передач, сцепление, карданная передача, ведущий мост;
  3. Ходовая часть (в простонародье – «ходовка»). Механическая основа движения автомобиля. Конструкция включает переднюю и заднюю подвески, колеса, ведущие мосты;
  4. Системы управления. Собственно говоря, это рулевая система (чтобы ехать) и тормозная (чтобы останавливаться);
  5. Электрооборудование. Сюда входят аккумулятор, проводка, генератор. Словом – источники и потребители тока.

Все перечисленные элементы крепятся к несущей конструкции – кузову автомобиля. Последний состоит из днища, передних и задних лонжеронов (силовые детали каркаса, делающие его прочным и устойчивым), моторного отсека, крыши и навесных элементов (двери, капот, крышка багажника, бампер, крылья).

Данный перечень — лишь «верхушка айсберга», но ее вполне достаточно, чтобы начать понимать базовый принцип устройства автомобиля.

Если вы ищете учебник или пособие, в котором легко и доступно, «для чайников», расписано устройство автомобиля, рекомендуем обратить внимание на книгу Бескаравайного М.И. «Устройство автомобиля просто и понятно для всех». Пособие легко скачать в Интернете из любой онлайн-библиотеки.

Краткий обзор важных систем и агрегатов устройства авто

Итак, согласно схеме общего устройства машины, она работает следующим образом.

Благодаря кузову все узлы устройства собраны вместе. Системы работают синхронно и слаженно. За запуск двигателя отвечает аккумулятор. Последний выдает искру, из-за которой воспламеняется бензин в камере сгорания. Детонация запускает движение поршней в моторе. Двигатель, с помощью трансмиссии (если максимально просто, это сила, которая крутит колеса) передает энергию на колеса. За плавность и исправность хода отвечает ходовка. Машина едет или останавливается. Эти процессы контролируются педалями «газ» и «тормоз». В автомобилях с механической коробкой передач есть еще педаль «сцепление» (об этом чуть ниже). Чтобы работали все лампочки и датчики, а также исправно функционировал бортовой компьютер, генератор вырабатывает ток.

Водитель, сидя за рулем в комфортабельном салоне, не видит и не ощущает всю сложность технического устройства автомобиля. Он лишь поворачивает ключ в замке, переключает рычаг коробки, давит педали, крутит руль, да жмет кнопочки на панели. Ну, и контролирует уровень топлива в баке. Сказка, да и только!

Однако, все же, если он хочет понимать устройство автомобиля, хотя бы на уровне «для начинающих», должен разбираться еще в некоторых механизмах.

  • Важным элементом схемы и устройства автомобиля является движок (или мотор). Они бывают внутреннего сгорания (на бензине или газе) и электрические. Первые подразделяются еще на десяток подвидов, но мы туда углубляться не станем.

  • Не менее значимой частью управления считается тормозная система. Она бывает стояночная (чтобы фиксировать авто на неровной поверхности) и рабочая (предназначена для временной или полной остановки, а также для снижения скорости движения);

  • Коробка передач. Речь идет о знакомых каждому водителю терминах «механика» или «автомат», если грамотно – МКПП и АКПП. Еще бывает роботизированная коробка (некий микс первых двух), но она не получила широкого распространения. Автоматом управлять проще, поскольку он сам контролирует скорость и нагрузку на машину, в такой машине нет педали сцепления. В случае же с механикой, водитель, с помощью последнего, самостоятельно переключает скорости, следя за нагрузкой на авто.

Что такое сцепление? Как работает данный элемент устройства? Вы когда-нибудь задумывались, почему, когда мы заводим тачку, она сразу не едет. Почему при заведенном двигателе она стоит на месте, пока мы не переключим скорость и не нажмем на педаль газа (тормоза и сцепления, потом газа при МКПП)? Сейчас попробуем объяснить:

  1. Силовой агрегат (движок) авто оснащен маховиком и коленвалом. На самом деле, там внутри сложная система шестеренок, валов и зубьев, но чтобы углубиться в детали этой конструкции, нужно обладать хотя бы минимальным запасом специальных знаний. А потому, мы стараемся объяснять проще.
  2. Со стороны маховика к мотору прикреплена коробка передач со сцеплением.
  3. Завод автомобиля происходит на «нейтралке» (нейтральная передача), при которой зубья коленчатого вала выведены из зацепления. Другими словами, вал коробки вращается вхолостую, крутящая сила, пока, не передается на колеса.
  4. Чтобы начать двигаться, нужно выжать сцепление. Оно спровоцирует плавное сочленение шестеренок маховика с трансмиссией. Далее, следует включить первую скорость. Начнется движение всего механизма, можно жать педаль газа. В автомобилях с АКПП весь этот процесс выполняется автоматически, без участия водителя.

Ну что же, мы разобрали базовые элементы конструкции и устройства современного автомобиля, постарались объяснить все максимально доступно и просто. Теперь вы понимаете, каким образом тачка едет, почему работает двигатель, за что отвечает тот или иной агрегат.

Мало кто поспорит, управлять современной машиной, да еще с АКПП – одно удовольствие. Но это – только если соблюдать рекомендации по уходу, относиться к авто бережно, вовремя проходить ТО и реагировать на малейшие неисправности.

Электрооборудование и системы помощи водителю

Многое в машине контролируется электрикой. Она довольно сложная, но значительно облегчает процесс вождения и делает пребывание в салоне максимально комфортным. Именно она запускает двигатель, поддерживая его в рабочем состоянии. Блок управления, аккумулятор, генератор, распределитель, искрообразующие свечи, — всё это отдельные части автомобиля, без которых невозможно представить его нормальное функционирование.

Второстепенными элементами автоэлектрики являются источники освещения: фонари, габаритные огни, поворотники, подсветка салона и т. д. Сюда же относится звуковой сигнал, всевозможные датчики и регуляторы.

К электрооборудованию можно причислять и системы, призванные улучшать курсовую устойчивость и управляемость автомобиля.

Тормозная система

Позволяет замедлять движение машины, вплоть до её полной остановки. Незаменима система во время экстренных ситуаций, а также когда автомобиль надо удерживать от самопроизвольного движения вниз. Автомобильные тормоза включают несколько подсистем: ручную, запасную, вспомогательную, антиблокировочную. Их совокупность называется тормозным управлением.

Задача основной тормозной системы — регулировать скорость движения машины, останавливать транспортное средство в случае необходимости. Состоит она из привода и исполнительных механизмов (барабан, диск). На современных легковых авто чаще используется гидропривод, реже — электрический, пневмо или комбинированный варианты. В некоторых случаях для повышения давления жидкости и эффективности торможения применяются вакуумный усилитель и регулятор.

При отказе или неисправности главного тормоза (разгерметизация одного из контуров и понижение уровня жидкости до критического) задействуется резервная тормозная система. Работает она как самостоятельный узел или вкупе с ручником.

Ручной или стояночный тормоз, оснащённый механическим приводом, предназначен для:

  • удержания машины на спусках;
  • аварийного торможения в чрезвычайных случаях.

Коэффициенты эффективности замедления автомобиля, движущегося со скоростью 80 км/ч при усилии на педаль до 50 кг основной системы и подсистем:

  • главный тормоз — не меньше 5,8 м/с2;
  • аварийный и ручной — 2,75 м/с2.

Принцип функционирования тормозов прост. После нажатия на педаль тормозное усилие передаётся на колёсные механизмы. Последние прижимают к дискам колодки, тем самым останавливая вращение.

Устройство шасси автомобиля

Шасси автомобиля состоит из множества механизмов, передающих крутящийся момент от двигателя к колесам, передвигающих автомобиль и управляющих им: трансмиссии, механизма управления автомобилем и ходовой части.

Читать еще:  Поршневой двигатель внутреннего сгорания: особенности работы

Сцепление автомобиля

Сцепление служит для того, чтобы передавать крутящий момент двигателя к коробке передач и плавно соединять или разъединять двигатель с механизмами трансмиссии. От педали сцепления идет трос, приводящий в действие механизм сцепления. Сцепление служит для предохранения деталей двигателя и трансмиссии от перегрузки и повреждения при резком включении передачи или торможении.

Поршневые кольца. Назначение, требования, классификация. Формы уплотнительных колец. Материалы поршневых колец. Влияние выбора материала на конструкцию кольца и поршневой группы.

Конструирование элементов КШМ ДВС

Основные конструктивные элементы поршневого ДВС. Классификация поршневых двигателей. Компоновочные схемы поршневых двигателей. Комбинированные ДВС.

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршня во вращательное движение коленвала. Он состоит из двух групп деталей: неподвижных и подвижных. К неподвижным деталям относятся: блок цилиндров, головки блока цилиндров, гильзы, крышка и картер маховика. К подвижным – поршни с кольцами и пальцами, шатуны, коленвал и маховик. Кривошипно-шатунный механизм может быть центральным, когда оси коленвала и цилиндров лежат в одной плоскости, или смещенным, когда оси коленвала и цилиндров лежат в разных плоскостях.

Механизм газораспределения предназначен для своевременного впуска в цилиндр горючей смеси и выпуска отработавших газов. Выполняются по двум конструктивным схемам: с верхним и нижним расположением коленвалов. Основные детали механизма газораспределения: впускные и выпускные клапана, коромысло, штанга, толкатель, распредвал.

Классификация поршневых двигателей.

1) По способу преобразования энергии давления газов во вращательное движение

a) поршневые двигатели с КШМ

2) По роду применяемого топлива:

a) на жидком топливе

3) По способу осуществления рабочего цикла

4) По способу воспламенения рабочей смеси:

a) с воспламенением от сжатия

b) с принудительным воспламенением

5) По способу охлаждения цилиндра

a) жидкостного охл.

6) По способу смесеобразования:

a) с внешним смесеобразованием

b) с внутренним смесеобразованием

7) По способу наполнения рабочего цилиндра:

Наддув – увеличение наполнения цилиндра двигателя воздухом путем увеличения давления на впуске.

Комбинированные двигатели – это двигатели, состоящие из поршневой части и нескольких компрессионных машин, а также из устройств подвода и отвода тепла, объединенных общим рабочим телом.

Комбинированные двигатели бывают:

— с механической связью (рисунок а )

— с газовой связью (рисунок б )

Для схемы а) «+» мощность турбины и компрессора могут быть различны.

Поршневая группа. Состав функции. Основные требования к конструкции поршня. Конструктивная реализация указанных требований. Обоснование формы поршня.

Состав поршневой группы:

2. уплотнительные, маслосъемные кольца

3. палец (поршневой)

4. ограничитель осевого перемещения поршневого пальца.

Функции поршневой группы:

1. воспринимать усилия от давления газов и сил инерции и передает их на шатун.

2. передает боковое давление от нормальной силы на стенку цилиндра.

3. обеспечивает герметичность внутри цилиндра.

4. выполняет роль золотникового устройства.

Основные требования к конструкции поршня:

1) Обеспечение герметичности от пропуска газов.

2) Эффективный отвод тепла от днища поршня в стенку цилиндра.

3) Минимальная тепловосприимчивость во внешней поверхности днища.

4) Повышенная износостойкость.

5) Обеспечение минимального расхода масла.

6) Минимальная масса при достаточной жёсткости и прочности.

7) Макс. Срок работы до первой переборки.

— с охлаждающей головкой

— без охлаждающей головки

В составных поршнях отъёмная головка изготовлена из жаропрочного материала. Форма поршня и его основные размеры определяются в 1-ю очередь условиями отвода воспринимаемого им тепла. Часть тепла отводится на подогревание рабочей смеси.

Форма поршня.

Поршень должен иметь наиболее простую (цилиндрическую) форму и по возможности симметричную относительно оси.

Форма днища определяется способом смесеобразования:

1. Плоское днище – наиболее распространено в двигателях с внешнем смесеобразованием.

«+» простота изготовления (min площадь соприкосновения с горячими газами)

2. Вогнутое – имеет благоприятную форму камеры сгорания, приближенную к сферической, при

3. Выпуклое днище – придает повышенную жесткость, менее склонен к образованию масленого нагара (используют в 2-х тактных двигателях) придает необходимое направление течения газов при продувке.

4. Клиновое днище – на ДВС с верхними клапанами

  1. Фигурное днище – с внутреннем смесеобразованием и центральным расположением форсунки; эта форма согласована с конфигурацией топливных факелов. Топливо не попадает на стенку цилиндра: ¯ расход, ¯ разжижение масла в цил.
  2. Камера сгорания выполнена в поршне – это обеспечивает

пленочное и объемно-пленочное смесеобразование.

  1. Камера сгорания прикрытого типа – теплонапряженность самая высокая

А 4 5

6 7

RMAX необходим для: ­ теплоотвода, ¯напряжений

Распределение температуры в поршне. Анализ распределения температуры. Доли отвода тепла отдельными элементами поршня. Материалы поршней. Дефекты поршней. Конструктивные мероприятия по предотвращению указанных дефектов.

Тепловое состояние.

  1. Участок с мах Т в центре днища представляет собой эллипс, вытянутый перпендикулярно оси поршневого пальца.
  2. Основной теплоперепад имеет место между днищем и нижнем поршневым кольцом.
  3. Падение Т в днище относительно невелико.
  4. Юбка поршня имеет одинаковую температуру.

Алюминиевый поршень имеет меньшую температуру, чем чугунный при прочих равных условиях. Температура поршня с воздушным охлаждением на 30 -50% выше чем с водным.

Для изготовления поршней используют следующие материалы:

1. Серый ковкий чугун СЧ 24-44; СЧ28-48

для напряженных конструкций – ВЧ45 – высокопрочный чугун, обладает высокой износостойкостью и прочностью, низкий коэффициент линейного расширения.

2. Легкие литейные сплавы: Al 1, Al 10, Al 19 – хорошие литейные свойства, низкий коэффициент линейного расширения.

Деформируемые алюминиевые сплавы (ковкие сплавы) – АК2, АК4 (уменьшенная масса, высокая теплопроводность, высокая степень сжатия)

«+» алюминиевые сплавы менее склонны к нагарообразованию

«–» плохая работа на холодном двигателе, плохие механические качества, низкая теплостойкость, высокая стоимость.

3. Стали. Используются жаропрочные сплавы.

4. Титан. Сложно обрабатывать.

Дефекты поршней:

— перегрев поршня, сопровождается отпуском материала, ¯ механических свойств, ¯ твердости. Развиваются микротрещины, приводящие к выкрашиванию материала.

Выход: использовать материалы с высокой теплостойкостью.

— эрозия и коррозия поршня (днища) под действием горячих газов.

Выход: механическая обработка днища поршня, оксидирование, хромирование, никелирование.

— износ боковой поверхности (зависит от качества масла)

Поршневые кольца. Назначение, требования, классификация. Формы уплотнительных колец. Материалы поршневых колец. Влияние выбора материала на конструкцию кольца и поршневой группы.

Поршневые кольца предназначены для предотвращения прорыва газов между поршнем и стенкой цилиндра, а также для удаления лишнего масла со стенок цилиндра, препятствуя проникновению его в камеру сгорания. Кроме того, поршневые кольца отводят тепло от головки поршня к стенкам цилиндра.

По назначению подразделяются на:

Около 50% механических потерь осуществляется через кольца.

Верхнее поршневое кольцо нагревается до 350-400 º, через него отводится самое большое количество тепла, оно работает в условиях плохой смазки.

Маслосъемные кольца: устанавливаются на поршне за компрессионными.

— однокромочные — двухкромочные — составные кольца

Однокромочные: «+» кромка, соскабливающая масло со стенок цилиндра, излишки масла через отверстия уйдут на смазку поршневого пальца.

Двухкромочные: «+» также содержит канал для удаления избытка масла.

Составные кольца: «+» при деформации ведут себя более гибко, сохраняют уплотняющие функции при перекосах.

Требования к поршневым кольцам:

1. плотное прилегание к поверхности цилиндра и опорным поверхностям канавок поршня (геом. услов.).

2. небольшое начальное давление (0,5-20 кг/см 2 ) на стенку цилиндра (силовые условия).

-площадь контакта уменьшается, давление на стенку цилиндра увеличивается.

— «минутные кольца» быстрей прирабатываются

скручивающиеся кольца. деформации косого изгиба

— они во время работы скручиваются, больше ресурс, хуже уплотняющие свойства

— трапециевидные кольца, удаляет излишки масла со стенок цилиндра; зазор постоянно меняется по величине.

Уплотняющее действие поршневых колец

Уплотняющие действия достигаются:

1. прижатием колец к поверхности цилиндра.

2. в результате образования системы поршневых каналов и зазоров сложного лабиринта.

При сжатии поршневого кольца:

— за счет собственной силы упругости колец (0,5 — 30) кг/см 2

— за счет давления газов проникающих через зазоры в канавку (30 — 40) кг/см 2

Материалы поршневых колец: чугун, сталь.

1. Механическая прочность при высоких температурах.

3. Низкий коэффициент трения при высоких температурах.

Чугун: серый (Ч), высокопрочный (ВЧ)

Покрытие стальных колец:

-покрытие молибденом (очень дорого), азотирование (большая вредность), титановое покрытие + азотирование = нитрид титана (высокая твердость).

Дата добавления: 2018-06-27 ; просмотров: 779 ; Мы поможем в написании вашей работы!

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector